TY - JOUR
T1 - Marked changes in diversity and relative activity of picoeukaryotes with depth in the world ocean.
AU - Giner, Caterina R
AU - Pernice, Massimo C
AU - Balagué, Vanessa
AU - Duarte, Carlos M.
AU - Gasol, Josep M.
AU - Logares, Ramiro
AU - Massana, Ramon
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This project was supported by the Spanish Ministry of Economy and Competitiveness through project Consolider-Ingenio Malaspina-2010 (CSD2008–00077). Further research was funded by Spanish projects FLAME (CGL2010-16304, MICINN), ALLFLAGS (CTM2016-75083-R, MINECO), INTERACTOMICS (CTM2015-69936-P, MINECO/FEDER) and REMEI (CTM2015-70340-R). CRG was supported by a Spanish FPI grant and RL was supported by a Ramón y Cajal fellowship (RYC-2013-12554, MINECO, Spain). We thank all the scientists that contributed samples and data for this study in the different legs of the Malaspina Expedition, as well as the crew of the R/V BIO Hespérides. We also thank T.S. Catalá and X.A. Álvarez-Salgado for the identification of the dominant water masses. Bioinformatic analyses have been performed at the Marbits platform (ICM-CSIC; https://marbits.icm.csic.es).
PY - 2019/10/25
Y1 - 2019/10/25
N2 - Microbial eukaryotes are key components of the ocean plankton. Yet, our understanding of their community composition and activity in different water layers of the ocean is limited, particularly for picoeukaryotes (0.2-3 µm cell size). Here, we examined the picoeukaryotic communities inhabiting different vertical zones of the tropical and subtropical global ocean: surface, deep chlorophyll maximum, mesopelagic (including the deep scattering layer and oxygen minimum zones), and bathypelagic. Communities were analysed by high-tthroughput sequencing of the 18S rRNA gene (V4 region) as represented by DNA (community structure) and RNA (metabolism), followed by delineation of Operational Taxonomic Units (OTUs) at 99% similarity. We found a stratification of the picoeukaryotic communities along the water column, with assemblages corresponding to the sunlit and dark ocean. Specific taxonomic groups either increased (e.g., Chrysophyceae or Bicosoecida) or decreased (e.g., Dinoflagellata or MAST-3) in abundance with depth. We used the rRNA:rDNA ratio of each OTU as a proxy of metabolic activity. The highest relative activity was found in the mesopelagic layer for most taxonomic groups, and the lowest in the bathypelagic. Altogether, we characterize the change in community structure and metabolic activity of picoeukaryotes with depth in the global ocean, suggesting a hotspot of activity in the mesopelagic.
AB - Microbial eukaryotes are key components of the ocean plankton. Yet, our understanding of their community composition and activity in different water layers of the ocean is limited, particularly for picoeukaryotes (0.2-3 µm cell size). Here, we examined the picoeukaryotic communities inhabiting different vertical zones of the tropical and subtropical global ocean: surface, deep chlorophyll maximum, mesopelagic (including the deep scattering layer and oxygen minimum zones), and bathypelagic. Communities were analysed by high-tthroughput sequencing of the 18S rRNA gene (V4 region) as represented by DNA (community structure) and RNA (metabolism), followed by delineation of Operational Taxonomic Units (OTUs) at 99% similarity. We found a stratification of the picoeukaryotic communities along the water column, with assemblages corresponding to the sunlit and dark ocean. Specific taxonomic groups either increased (e.g., Chrysophyceae or Bicosoecida) or decreased (e.g., Dinoflagellata or MAST-3) in abundance with depth. We used the rRNA:rDNA ratio of each OTU as a proxy of metabolic activity. The highest relative activity was found in the mesopelagic layer for most taxonomic groups, and the lowest in the bathypelagic. Altogether, we characterize the change in community structure and metabolic activity of picoeukaryotes with depth in the global ocean, suggesting a hotspot of activity in the mesopelagic.
UR - http://hdl.handle.net/10754/660060
UR - http://www.nature.com/articles/s41396-019-0506-9
UR - http://www.scopus.com/inward/record.url?scp=85074567522&partnerID=8YFLogxK
U2 - 10.1038/s41396-019-0506-9
DO - 10.1038/s41396-019-0506-9
M3 - Article
C2 - 31645670
SN - 1751-7362
VL - 14
SP - 437
EP - 449
JO - The ISME Journal
JF - The ISME Journal
IS - 2
ER -