Measuring EMF and Throughput Before and After 5G Service Activation in a Residential Area

Luca Chiaraviglio, Stefania Bartoletti, Nicola Blefari-Melazzi, Chiara Lodovisi, Alessia Moretti, Francesco Zampognaro, Mohamed-Slim Alouini

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

The deployment of 5G networks is approaching a mature phase in many countries across the world. However, little efforts have been done so far to scientifically compare ElectroMagnetic Field (EMF) exposure and traffic levels before and after the activation of 5G service over the territory. The goal of this work is to provide a sound comparative assessment of exposure and traffic, by performing repeated measurements before and after 5G provisioning service. Our solution is based on an EMF meter and a spectrum analyzer that is remotely controlled by a measurement algorithm. In this way, we dissect the contribution of each pre-5G and 5G band radiating over the territory. In addition, we employ a traffic chain to precisely characterize the achieved throughput levels. Results, derived from a set of measurements performed on a commercial deployment, reveal that the provisioning of 5G service over mid-band frequencies has a limited impact on the exposure. In parallel, the measured traffic is more than doubled when 5G is activated over mid-bands, reaching levels above 200 Mbps. On the other hand, the provisioning of 5G over sub-GHz bands does not introduce a substantial increase in the traffic levels. Eventually, we demonstrate that EMF exposure is impacted by the raw-land reconfiguration to host the 5G panels, which introduces changes in the sight conditions and in the power received from the main lobes.
Original languageEnglish (US)
Pages (from-to)1-1
Number of pages1
JournalIEEE Open Journal of the Communications Society
DOIs
StatePublished - May 18 2023

Fingerprint

Dive into the research topics of 'Measuring EMF and Throughput Before and After 5G Service Activation in a Residential Area'. Together they form a unique fingerprint.

Cite this