MEMS coupled resonator for filter application in AIR

Saad Ilyas, Nizar Jaber, Mohammad I. Younis*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We present a mechanically coupled MEMS H resonator capable of performing simultaneous amplification and filter operation in air. The device comprises of two doubly clamped polyimide microbeams joined through the middle by a coupling beam of the same size. The resonator is fabricated via a multilayer surface micromachining process. A special fabrication process and device design is employed to enable the device's operation in air and to achieve mechanical amplification of the output response. Moreover, mixed-frequency excitation is used to demonstrate a tunable wide band filter. The device design combined with the mixed-frequency excitation is used to demonstrate simultaneous amplification and filtering in air.

Original languageEnglish (US)
Title of host publication22nd Design for Manufacturing and the Life Cycle Conference; 11th International Conference on Micro- and Nanosystems
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791858165
DOIs
StatePublished - 2017
EventASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2017 - Cleveland, United States
Duration: Aug 6 2017Aug 9 2017

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume4

Conference

ConferenceASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2017
Country/TerritoryUnited States
CityCleveland
Period08/6/1708/9/17

ASJC Scopus subject areas

  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'MEMS coupled resonator for filter application in AIR'. Together they form a unique fingerprint.

Cite this