TY - JOUR
T1 - Meso-ester and carboxylic acid substituted BODIPYs with far-red and near-infrared emission for bioimaging applications
AU - Ni, Yong
AU - Zeng, Lintao
AU - Kang, Namyoung
AU - Huang, Kuo-Wei
AU - Wang, Liang
AU - Zeng, Zebing
AU - Chang, Young-Tae
AU - Wu, Jishan
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The work was supported financially by the A*STAR BMRC grant (10/1/21/19/642), the Singapore-Peking-Oxford Research Enterprise (SPORE) (COY-15-EWI-RCFSA/N197-1), MOE Tier 2 grant (MOE2011-T2-2-130), and IMRE core funding (IMRE/13-1C0205).
PY - 2014/1/21
Y1 - 2014/1/21
N2 - A series of meso-ester-substituted BODIPY derivatives 1-6 are synthesized and characterized. In particular, dyes functionalized with oligo(ethylene glycol) ether styryl or naphthalene vinylene groups at the α positions of the BODIPY core (3-6) become partially soluble in water, and their absorptions and emissions are located in the far-red or near-infrared region. Three synthetic approaches are attempted to access the meso-carboxylic acid (COOH)-substituted BODIPYs 7 and 8 from the meso-ester-substituted BODIPYs. Two feasible synthetic routes are developed successfully, including one short route with only three steps. The meso-COOH-substituted BODIPY 7 is completely soluble in pure water, and its fluorescence maximum reaches around 650 nm with a fluorescence quantum yield of up to 15 %. Time-dependent density functional theory calculations are conducted to understand the structure-optical properties relationship, and it is revealed that the Stokes shift is dependent mainly on the geometric change from the ground state to the first excited singlet state. Furthermore, cell staining tests demonstrate that the meso-ester-substituted BODIPYs (1 and 3-6) and one of the meso-COOH-substituted BODIPYs (8) are very membrane-permeable. These features make these meso-ester- and meso-COOH-substituted BODIPY dyes attractive for bioimaging and biolabeling applications in living cells. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
AB - A series of meso-ester-substituted BODIPY derivatives 1-6 are synthesized and characterized. In particular, dyes functionalized with oligo(ethylene glycol) ether styryl or naphthalene vinylene groups at the α positions of the BODIPY core (3-6) become partially soluble in water, and their absorptions and emissions are located in the far-red or near-infrared region. Three synthetic approaches are attempted to access the meso-carboxylic acid (COOH)-substituted BODIPYs 7 and 8 from the meso-ester-substituted BODIPYs. Two feasible synthetic routes are developed successfully, including one short route with only three steps. The meso-COOH-substituted BODIPY 7 is completely soluble in pure water, and its fluorescence maximum reaches around 650 nm with a fluorescence quantum yield of up to 15 %. Time-dependent density functional theory calculations are conducted to understand the structure-optical properties relationship, and it is revealed that the Stokes shift is dependent mainly on the geometric change from the ground state to the first excited singlet state. Furthermore, cell staining tests demonstrate that the meso-ester-substituted BODIPYs (1 and 3-6) and one of the meso-COOH-substituted BODIPYs (8) are very membrane-permeable. These features make these meso-ester- and meso-COOH-substituted BODIPY dyes attractive for bioimaging and biolabeling applications in living cells. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
UR - http://hdl.handle.net/10754/563346
UR - http://doi.wiley.com/10.1002/chem.201303868
UR - http://www.scopus.com/inward/record.url?scp=84893828345&partnerID=8YFLogxK
U2 - 10.1002/chem.201303868
DO - 10.1002/chem.201303868
M3 - Article
SN - 0947-6539
VL - 20
SP - 2301
EP - 2310
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
IS - 8
ER -