TY - JOUR
T1 - Metal-Organic Coordination Strategy to Metal-decorated Mo-based Complexes: Multi-dimensional Structural Evolution and High Rate Lithium Ion Battery Applications
AU - Ming, Jun
AU - Wang, Limin
AU - Zhang, Jiao
AU - Zhou, Lin
AU - Sun, Qujiang
AU - Ming, Hai
AU - Sun, Lianshan
AU - Wang, Chunli
AU - Wu, Yingqiang
AU - Guan, Kai
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work is supported by the National Natural Science Foundation of China (21521092, 21703285) and National Key R&D Program of China (SQ2017YFGH001474).The authors also thank the Independent Research Project of the State Key Laboratory of Rare Earth Resources Utilization (110005R086), Changchun Institute of Applied Chemistry, Chinese Academy of Sciences.
PY - 2019/6/5
Y1 - 2019/6/5
N2 - Multi-dimensional metal oxides have attracted great attention in diverse applications due to their intriguing performances, however the structural design remains challenging particularly in organic chelation chemistry. Although the metal-organic complex with different architectures have been reported, the structural formation mechanisms are still lack of understanding because of the complex chelating process. Herein, we introduce a new metal-organic coordination strategy to construct metal-decorated (Ni, Co, Mn) Mo-based compound from 2D nanopetal to 3D microflower for the first time. We find that the chelating process of metal-organic complex can be tuned by surfactant, and then give rise to different structures, where the metal can be further decorated and tuned. Thus, the metal (oxide) decorated MoO2/C-N with different structures were designed, enabling an extremely high lithium storage capability of 1018 mAh g-1 and rate capacities even at 10 A g-1 over 1000 cycles. In addition, the relations between the electrochemical behaviors and structures was analyzed by kinetic analysis, and then a high rate lithium ion battery is introduced using the Ni-MoO2/C-N and Nick-rich layered oxide as the anode and cathode, respectively. We believe this general metal-organic coordination strategy is applicable for other multi-functional materials for greater capabilities.
AB - Multi-dimensional metal oxides have attracted great attention in diverse applications due to their intriguing performances, however the structural design remains challenging particularly in organic chelation chemistry. Although the metal-organic complex with different architectures have been reported, the structural formation mechanisms are still lack of understanding because of the complex chelating process. Herein, we introduce a new metal-organic coordination strategy to construct metal-decorated (Ni, Co, Mn) Mo-based compound from 2D nanopetal to 3D microflower for the first time. We find that the chelating process of metal-organic complex can be tuned by surfactant, and then give rise to different structures, where the metal can be further decorated and tuned. Thus, the metal (oxide) decorated MoO2/C-N with different structures were designed, enabling an extremely high lithium storage capability of 1018 mAh g-1 and rate capacities even at 10 A g-1 over 1000 cycles. In addition, the relations between the electrochemical behaviors and structures was analyzed by kinetic analysis, and then a high rate lithium ion battery is introduced using the Ni-MoO2/C-N and Nick-rich layered oxide as the anode and cathode, respectively. We believe this general metal-organic coordination strategy is applicable for other multi-functional materials for greater capabilities.
UR - http://hdl.handle.net/10754/631878
UR - https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.201900972
UR - http://www.scopus.com/inward/record.url?scp=85067418076&partnerID=8YFLogxK
U2 - 10.1002/chem.201900972
DO - 10.1002/chem.201900972
M3 - Article
C2 - 30973657
SN - 0947-6539
VL - 25
SP - 8813
EP - 8819
JO - Chemistry – A European Journal
JF - Chemistry – A European Journal
IS - 37
ER -