TY - JOUR
T1 - Metal–Halide Perovskite Nanocrystal Superlattice: Self-Assembly and Optical Fingerprints
AU - Liu, Zhuang
AU - Qin, Xian
AU - Chen, Qihao
AU - Jiang, Tianci
AU - Chen, Qiushui
AU - Liu, Xiaogang
N1 - KAUST Repository Item: Exported on 2023-03-03
Acknowledged KAUST grant number(s): OSR-2018-CRG7-3736
Acknowledgements: The authors thank the National Research Foundation (NRF), the Prime Minister's Office of Singapore under its Competitive Research Program (CRP Award No. NRF-CRP23-2019-0002), the NRF Investigatorship Programme (Award No. NRF-NRFI05-2019-0003), and the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2018-CRG7-3736.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2023/2/3
Y1 - 2023/2/3
N2 - Self-assembly of nanocrystals into superlattices is a fascinating process that not only changes geometric morphology, but also creates unique properties that considerably enrich the material toolbox for new applications. Numerous studies have driven the blossoming of superlattices from various aspects. These include precise control of size and morphology, enhancement of properties, exploitation of functions, and integration of the material into miniature devices. The effective synthesis of metal–halide perovskite nanocrystals has advanced research on self-assembly of building blocks into micrometer-sized superlattices. More importantly, these materials exhibit abundant optical features, including highly coherent superfluorescence, amplified spontaneous laser emission, and adjustable spectral redshift, facilitating basic research and state-of-the-art applications. This review summarizes recent advances in the field of metal–halide perovskite superlattices. It begins with basic packing models and introduces various stacking configurations of superlattices. The potential of multiple capping ligands is also discussed and their crucial role in superlattice growth is highlighted, followed by detailed reviews of synthesis and characterization methods. How these optical features can be distinguished and present contemporary applications is then considered. This review concludes with a list of unanswered questions and an outlook on their potential use in quantum computing and quantum communications to stimulate further research in this area.
AB - Self-assembly of nanocrystals into superlattices is a fascinating process that not only changes geometric morphology, but also creates unique properties that considerably enrich the material toolbox for new applications. Numerous studies have driven the blossoming of superlattices from various aspects. These include precise control of size and morphology, enhancement of properties, exploitation of functions, and integration of the material into miniature devices. The effective synthesis of metal–halide perovskite nanocrystals has advanced research on self-assembly of building blocks into micrometer-sized superlattices. More importantly, these materials exhibit abundant optical features, including highly coherent superfluorescence, amplified spontaneous laser emission, and adjustable spectral redshift, facilitating basic research and state-of-the-art applications. This review summarizes recent advances in the field of metal–halide perovskite superlattices. It begins with basic packing models and introduces various stacking configurations of superlattices. The potential of multiple capping ligands is also discussed and their crucial role in superlattice growth is highlighted, followed by detailed reviews of synthesis and characterization methods. How these optical features can be distinguished and present contemporary applications is then considered. This review concludes with a list of unanswered questions and an outlook on their potential use in quantum computing and quantum communications to stimulate further research in this area.
UR - http://hdl.handle.net/10754/689936
UR - https://onlinelibrary.wiley.com/doi/10.1002/adma.202209279
UR - http://www.scopus.com/inward/record.url?scp=85148654582&partnerID=8YFLogxK
U2 - 10.1002/adma.202209279
DO - 10.1002/adma.202209279
M3 - Article
C2 - 36738101
SN - 1521-4095
SP - 2209279
JO - Advanced Materials
JF - Advanced Materials
ER -