TY - JOUR
T1 - Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production
AU - Kim, Younggy
AU - Logan, Bruce E.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-I1-003-13
Acknowledgements: This research was supported by funding through the King Abdullah University of Science and Technology (KAUST) (Award KUS-I1-003-13).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2011/7
Y1 - 2011/7
N2 - A new type of bioelectrochemical system for producing electrical power, called a microbial reverse-electrodialysis cell (MRC), was developed to increase voltages and power densities compared to those generated individually by microbial fuel cells (MFCs) or reverse electrodialysis (RED) systems. In RED systems, electrode overpotentials create significant energy losses due to thermodynamically unfavorable electrode reactions, and therefore a large number of stacked cells must be used to have significant energy recovery. This results in high capital costs for the large number of membranes, and increases energy losses from pumping water through a large number of cells. In an MRC, high overpotentials are avoided through oxidation of organic matter by exoelectrogenic bacteria on the anode and oxygen reduction on the cathode. An MRC containing only five pairs of RED cells, fed solutions typical of seawater (600 mM NaCl) and river water (12 mM NaCl) at 0.85 mL/min, produced up to 3.6 W/m2 (cathode surface area) and 1.2-1.3 V with acetate as a substrate. Pumping accounted for
AB - A new type of bioelectrochemical system for producing electrical power, called a microbial reverse-electrodialysis cell (MRC), was developed to increase voltages and power densities compared to those generated individually by microbial fuel cells (MFCs) or reverse electrodialysis (RED) systems. In RED systems, electrode overpotentials create significant energy losses due to thermodynamically unfavorable electrode reactions, and therefore a large number of stacked cells must be used to have significant energy recovery. This results in high capital costs for the large number of membranes, and increases energy losses from pumping water through a large number of cells. In an MRC, high overpotentials are avoided through oxidation of organic matter by exoelectrogenic bacteria on the anode and oxygen reduction on the cathode. An MRC containing only five pairs of RED cells, fed solutions typical of seawater (600 mM NaCl) and river water (12 mM NaCl) at 0.85 mL/min, produced up to 3.6 W/m2 (cathode surface area) and 1.2-1.3 V with acetate as a substrate. Pumping accounted for
UR - http://hdl.handle.net/10754/598828
UR - https://pubs.acs.org/doi/10.1021/es200979b
UR - http://www.scopus.com/inward/record.url?scp=79959896437&partnerID=8YFLogxK
U2 - 10.1021/es200979b
DO - 10.1021/es200979b
M3 - Article
C2 - 21644573
SN - 0013-936X
VL - 45
SP - 5834
EP - 5839
JO - Environmental Science & Technology
JF - Environmental Science & Technology
IS - 13
ER -