Abstract
We report the use of interlayer lithography for the micron-scale patterning of high conductivity poly(3,4-ethylendioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The interlayer method was used to fabricate PEDOT:PSS source and drain electrodes with conductivities >360 S/cm and pattern gaps≥4 lm for top-gate/bottom-contact organic field-effect transistors (OFETs). p-Type OFETs based on 2,8-difluoro-5,11-bis(triethylsilylethynyl)-anthradithiophene (diF-TESADT) and blends of diF-TESADT with poly(tri-arylamine) (PTAA) exhibited high hole mobilities of up to 1 and 0.25 cm2/V s, respectively, while ambipolar OFETs based on methanofullerene [6,6]-phenyl-C61-butyric acid methyl-ester (PCBM) exhibited respective electron and hole mobilities of 0.05 and 0.005 cm2/V s. Complementary voltage inverters based on the diF-TESADT/PTAA and PCBM OFETs exhibited excellent operating characteristics with wide noise margin and high signal gain, indicating that the interlayer method offers a viable route to cost efficient, solution-processed, and flexible organic electronics.
Original language | English (US) |
---|---|
Pages (from-to) | 1307-1312 |
Number of pages | 6 |
Journal | Organic Electronics |
Volume | 11 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2010 |
Externally published | Yes |
Keywords
- Interlayer lithography
- Organic transistor
- PEDOT:PSS
- Patterning
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Biomaterials
- General Chemistry
- Condensed Matter Physics
- Materials Chemistry
- Electrical and Electronic Engineering