Abstract
The microscopic-scale Richtmyer-Meshkov instability (RMI) of a single-mode dense-gas interface is studied by the molecular dynamics approach. Physically realistic evolution processes involving the non-equilibrium effects such as diffusion, dissipation, and thermal conduction are examined for different shock strengths. Different dependence of the perturbation growth on the shock strength is found for the first time. Specifically, the amplitude growths for cases with relatively lower shock Mach numbers (Ma = 1.9, 2.4, 2.9) exhibit an evident discrepancy from a very early stage, whereas for cases with higher Mach numbers (Ma = 4.9, 9.0, 16.0), their amplitude variations with time match quite well during the whole simulation time. Such different behaviors are ascribed to the viscosity effect that plays a crucial role in the microscale RMI. The compressible linear theory of Yang et al. [
Original language | English (US) |
---|---|
Pages (from-to) | 024109 |
Journal | Physics of Fluids |
Volume | 32 |
Issue number | 2 |
DOIs | |
State | Published - Feb 24 2020 |