Migration of viscoacoustic data using acoustic reverse time migration with hybrid deblurring filters

Yuqing Chen, Bowen Guo, Gerard T. Schuster

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Viscoacoustic migration can significantly compensate for the amplitude loss and phase distortion in migration images computed from highly attenuated data. However, solving the viscoacoustic wave equation requires a significant amount of storage space and computation time, especially for least-squares migration methods. To mitigate this problem, we used acoustic reverse time migration (RTM) instead of viscoacoustic migration to migrate the viscoacoustic data and then we correct the amplitude and phase distortion by hybrid deblurring filters in the image domain. Numerical tests on synthetic and field data demonstrate that acoustic RTM combined with hybrid deblurring filters can compensate for the attenuation effects and produce images with high resolution and balanced amplitudes. This procedure requires less than one-third of the storage space and is [Formula: see text] times faster compared with the viscoacoustic migration, but at the cost of mildly reduced accuracy. Here, [Formula: see text] represents the number of iterations used for least-squares migration method. This method can be extended to 3D migration at even a greater cost saving.
Original languageEnglish (US)
Pages (from-to)S127-S136
Number of pages1
JournalGeophysics
Volume84
Issue number3
DOIs
StatePublished - 2019

Fingerprint

Dive into the research topics of 'Migration of viscoacoustic data using acoustic reverse time migration with hybrid deblurring filters'. Together they form a unique fingerprint.

Cite this