[Mini review] metagenomic studies of the Red Sea

Hayedeh Behzad, Martin Augusto Ibarra, Katsuhiko Mineta, Takashi Gojobori

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Metagenomics has significantly advanced the field of marine microbial ecology, revealing the vast diversity of previously unknown microbial life forms in different marine niches. The tremendous amount of data generated has enabled identification of a large number of microbial genes (metagenomes), their community interactions, adaptation mechanisms, and their potential applications in pharmaceutical and biotechnology-based industries. Comparative metagenomics reveals that microbial diversity is a function of the local environment, meaning that unique or unusual environments typically harbor novel microbial species with unique genes and metabolic pathways. The Red Sea has an abundance of unique characteristics; however, its microbiota is one of the least studied amongst marine environments. The Red Sea harbors approximately 25 hot anoxic brine pools, plus a vibrant coral reef ecosystem. Physiochemical studies describe the Red Sea as an oligotrophic environment that contains one of the warmest and saltiest waters in the world with year-round high UV radiations. These characteristics are believed to have shaped the evolution of microbial communities in the Red Sea. Over-representation of genes involved in DNA repair, high-intensity light responses, and osmolyte C1 oxidation were found in the Red Sea metagenomic databases suggesting acquisition of specific environmental adaptation by the Red Sea microbiota. The Red Sea brine pools harbor a diverse range of halophilic and thermophilic bacterial and archaeal communities, which are potential sources of enzymes for pharmaceutical and biotechnology-based application. Understanding the mechanisms of these adaptations and their function within the larger ecosystem could also prove useful in light of predicted global warming scenarios where global ocean temperatures are expected to rise by 1–3 °C in the next few decades. In this review, we provide an overview of the published metagenomic studies that were conducted in the Red Sea, and the bio-prospecting potential of the Red Sea microbiota. Furthermore, we discuss the limitations of the previous studies and the need for generating a large and representative metagenomic database of the Red Sea to help establish a dynamic model of the Red Sea microbiota.
Original languageEnglish (US)
Pages (from-to)717-723
Number of pages7
JournalGene
Volume576
Issue number2
DOIs
StatePublished - Oct 25 2015

ASJC Scopus subject areas

  • Genetics

Fingerprint

Dive into the research topics of '[Mini review] metagenomic studies of the Red Sea'. Together they form a unique fingerprint.

Cite this