Mode-selective vibrational modulation of charge transport in organic electronic devices

Artem A. Bakulin, Robert Lovrincic, Xi Yu, Oleg Selig, Huib J. Bakker, Yves L. A. Rezus, Pabitra K. Nayak, Alexandr Fonari, Veaceslav Coropceanu, Jean-Luc Bredas, David Cahen

Research output: Contribution to journalArticlepeer-review

71 Scopus citations

Abstract

The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500–1,700 cm−1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron–phonon coupling and charge dynamics in (bio)molecular materials.
Original languageEnglish (US)
JournalNature Communications
Volume6
Issue number1
DOIs
StatePublished - Aug 6 2015

Fingerprint

Dive into the research topics of 'Mode-selective vibrational modulation of charge transport in organic electronic devices'. Together they form a unique fingerprint.

Cite this