TY - JOUR
T1 - Model of parameters controlling resistance of pipeline steels to hydrogen-induced cracking
AU - Traidia, Abderrazak
AU - El-Sherik, A. M.
AU - Duval, Sébastien
AU - Lubineau, Gilles
AU - El Yagoubi, Jalal
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2014/1
Y1 - 2014/1
N2 - NACE MR0175/ISO 15156-2 standard provides test conditions and acceptance criteria to evaluate the resistance of carbon and low-alloy steels to hydrogen-induced cracking (HIC). The second option proposed by this standard offers a large flexibility on the choice of test parameters (pH, H2S partial pressure, and test duration), with zero tolerance to HIC initiation as an acceptance condition. The present modeling work is a contribution for a better understanding on how the test parameters and inclusion size can influence HIC initiation, and is therefore of potential interest for both steel makers and endusers. A model able to link the test operating parameters (pH, partial pressure of H2S, and temperature) to the maximum hydrogen pressure generated in the microstructural defects is proposed. The model results are then used to back calculate the minimum fracture toughness below which HIC extends. A minimum fracture toughness of 400 MPa√mm, at the segregation zone, prevents HIC occurrence and leads to successfully pass the HIC qualification test, even under extreme test conditions. The computed results show that the maximum generated pressure can reach up to 1,500 MPa. The results emphasize that the H2S partial pressure and test temperature can both have a strong influence on the final test results, whereas the influence of the pH of the test solution is less significant. © 2014, NACE International.
AB - NACE MR0175/ISO 15156-2 standard provides test conditions and acceptance criteria to evaluate the resistance of carbon and low-alloy steels to hydrogen-induced cracking (HIC). The second option proposed by this standard offers a large flexibility on the choice of test parameters (pH, H2S partial pressure, and test duration), with zero tolerance to HIC initiation as an acceptance condition. The present modeling work is a contribution for a better understanding on how the test parameters and inclusion size can influence HIC initiation, and is therefore of potential interest for both steel makers and endusers. A model able to link the test operating parameters (pH, partial pressure of H2S, and temperature) to the maximum hydrogen pressure generated in the microstructural defects is proposed. The model results are then used to back calculate the minimum fracture toughness below which HIC extends. A minimum fracture toughness of 400 MPa√mm, at the segregation zone, prevents HIC occurrence and leads to successfully pass the HIC qualification test, even under extreme test conditions. The computed results show that the maximum generated pressure can reach up to 1,500 MPa. The results emphasize that the H2S partial pressure and test temperature can both have a strong influence on the final test results, whereas the influence of the pH of the test solution is less significant. © 2014, NACE International.
UR - http://hdl.handle.net/10754/563309
UR - http://corrosionjournal.org/doi/10.5006/1056
UR - http://www.scopus.com/inward/record.url?scp=84892659295&partnerID=8YFLogxK
U2 - 10.5006/1056
DO - 10.5006/1056
M3 - Article
SN - 0010-9312
VL - 70
SP - 87
EP - 94
JO - CORROSION
JF - CORROSION
IS - 1
ER -