TY - JOUR
T1 - Modeling and Predicting AD Progression by Regression Analysis of Sequential Clinical Data
AU - Xie, Qing
AU - Wang, Su
AU - Zhu, Jia
AU - Zhang, Xiangliang
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST).
Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimers Association; Alzheimers Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (http://www.fnih.org. The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.
PY - 2016/2/24
Y1 - 2016/2/24
N2 - Alzheimer's Disease (AD) is currently attracting much attention in elders' care. As the increasing availability of massive clinical diagnosis data, especially the medical images of brain scan, it is highly significant to precisely identify and predict the potential AD's progression based on the knowledge in the diagnosis data. In this paper, we follow a novel sequential learning framework to model the disease progression for AD patients' care. Different from the conventional approaches using only initial or static diagnosis data to model the disease progression for different durations, we design a score-involved approach and make use of the sequential diagnosis information in different disease stages to jointly simulate the disease progression. The actual clinical scores are utilized in progress to make the prediction more pertinent and reliable. We examined our approach by extensive experiments on the clinical data provided by the Alzheimer's Disease Neuroimaging Initiative (ADNI). The results indicate that the proposed approach is more effective to simulate and predict the disease progression compared with the existing methods.
AB - Alzheimer's Disease (AD) is currently attracting much attention in elders' care. As the increasing availability of massive clinical diagnosis data, especially the medical images of brain scan, it is highly significant to precisely identify and predict the potential AD's progression based on the knowledge in the diagnosis data. In this paper, we follow a novel sequential learning framework to model the disease progression for AD patients' care. Different from the conventional approaches using only initial or static diagnosis data to model the disease progression for different durations, we design a score-involved approach and make use of the sequential diagnosis information in different disease stages to jointly simulate the disease progression. The actual clinical scores are utilized in progress to make the prediction more pertinent and reliable. We examined our approach by extensive experiments on the clinical data provided by the Alzheimer's Disease Neuroimaging Initiative (ADNI). The results indicate that the proposed approach is more effective to simulate and predict the disease progression compared with the existing methods.
UR - http://hdl.handle.net/10754/600281
UR - http://linkinghub.elsevier.com/retrieve/pii/S0925231216001193
UR - http://www.scopus.com/inward/record.url?scp=84977858264&partnerID=8YFLogxK
U2 - 10.1016/j.neucom.2015.07.145
DO - 10.1016/j.neucom.2015.07.145
M3 - Article
SN - 0925-2312
VL - 195
SP - 50
EP - 55
JO - Neurocomputing
JF - Neurocomputing
ER -