TY - JOUR
T1 - Modeling of Viral Aerosol Transmission and Detection
AU - Khalid, Maryam
AU - Amin, Osama
AU - Ahmed, Sajid
AU - Shihada, Basem
AU - Alouini, Mohamed-Slim
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2020
Y1 - 2020
N2 - In this paper, we propose studying the disease spread mechanism in the atmosphere as an engineering problem. Aerosol transmission is the most significant mode among the viral transmission mechanisms that do not include physical contact, where airflows carry virus-laden droplets over long distances. Throughout this work, we study the transport of these droplets as a molecular communication problem, where one has no control over the transmission source, but a robust receiver can be designed using bio-sensors. To this end, we present a complete system model and derive an end-to-end mathematical model for the transmission channel under certain constraints and boundary conditions. We derive the system response for both continuous sources such as breathing and jet or impulsive sources such as coughing and sneezing. In addition to transmitter and channel, we assumed a receiver architecture composed of air sampler and Silicon Nanowire field-effect transistor. Then, we formulate a detection problem to maximize the likelihood decision rule and minimize the corresponding missed detection probability. Finally, we present several numerical results to observe the impact of parameters that affect the performance and justify the feasibility of the proposed setup in related applications.
AB - In this paper, we propose studying the disease spread mechanism in the atmosphere as an engineering problem. Aerosol transmission is the most significant mode among the viral transmission mechanisms that do not include physical contact, where airflows carry virus-laden droplets over long distances. Throughout this work, we study the transport of these droplets as a molecular communication problem, where one has no control over the transmission source, but a robust receiver can be designed using bio-sensors. To this end, we present a complete system model and derive an end-to-end mathematical model for the transmission channel under certain constraints and boundary conditions. We derive the system response for both continuous sources such as breathing and jet or impulsive sources such as coughing and sneezing. In addition to transmitter and channel, we assumed a receiver architecture composed of air sampler and Silicon Nanowire field-effect transistor. Then, we formulate a detection problem to maximize the likelihood decision rule and minimize the corresponding missed detection probability. Finally, we present several numerical results to observe the impact of parameters that affect the performance and justify the feasibility of the proposed setup in related applications.
UR - http://hdl.handle.net/10754/627923
UR - https://ieeexplore.ieee.org/document/9091808/
U2 - 10.1109/TCOMM.2020.2994191
DO - 10.1109/TCOMM.2020.2994191
M3 - Article
SN - 1558-0857
SP - 1
EP - 1
JO - IEEE Transactions on Communications
JF - IEEE Transactions on Communications
ER -