Modeling phototrophic biofilms in a plug-flow reactor

J. D. Muñoz Sierra, C. Picioreanu, M. C.M. Van Loosdrecht

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

The use of phototrophic biofilms in wastewater treatment has been recognized as a potential option for development of new reactor configurations. For better understanding of these systems, a numerical model was developed including relevant microbial processes. As a novelty, this model was implemented in COMSOL Multiphysics, a modern computational environment for complex dynamic models. A two-dimensional biofilm model was used to study the spatial distribution of microbial species within the biofilm and along the length of the reactor. The biofilm model was coupled with a one-dimensional plug-flow bulk liquid model. The impact of different operational conditions on the chemical oxygen demand (COD) and ammonia conversions was assessed. The model was tuned by varying two parameters: the half-saturation coefficient for light use by phototrophs and the oxygen mass transfer coefficient. The mass transfer coefficient was found to be determining for the substrate conversion rate. Simulations indicate that heterotrophs would overgrow nitrifiers and phototrophs within the biofilm until a low biodegradable COD value in the wastewater is reached (organic loading rate
Original languageEnglish (US)
Pages (from-to)1261-1270
Number of pages10
JournalWater Science and Technology
Volume70
Issue number7
DOIs
StatePublished - Jan 1 2014
Externally publishedYes

ASJC Scopus subject areas

  • Water Science and Technology
  • Environmental Engineering

Fingerprint

Dive into the research topics of 'Modeling phototrophic biofilms in a plug-flow reactor'. Together they form a unique fingerprint.

Cite this