Molecular architecture of the mammalian 2-oxoglutarate dehydrogenase complex

Yitang Zhang, Maofei Chen, Xudong Chen, Minghui Zhang, Jian Yin, Zi Yang, Xin Gao, Sensen Zhang*, Maojun Yang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The 2-oxoglutarate dehydrogenase complex (OGDHc) orchestrates a critical reaction regulating the TCA cycle. Although the structure of each OGDHc subunit has been solved, the architecture of the intact complex and inter-subunit interactions still remain unknown. Here we report the assembly of native, intact OGDHc from Sus scrofa heart tissue using cryo-electron microscopy (cryo-EM), cryo-electron tomography (cryo-ET), and subtomogram averaging (STA) to discern native structures of the whole complex and each subunit. Our cryo-EM analyses revealed the E2o cubic core structure comprising eight homotrimers at 3.3-Å resolution. More importantly, the numbers, positions and orientations of each OGDHc subunit were determined by cryo-ET and the STA structures of the core were resolved at 7.9-Å with the peripheral subunits reaching nanometer resolution. Although the distribution of the peripheral subunits E1o and E3 vary among complexes, they demonstrate a certain regularity within the position and orientation. Moreover, we analyzed and validated the interactions between each subunit, and determined the flexible binding mode for E1o, E2o and E3, resulting in a proposed model of Sus scrofa OGDHc. Together, our results reveal distinctive factors driving the architecture of the intact, native OGDHc.

Original languageEnglish (US)
Article number8407
JournalNature Communications
Volume15
Issue number1
DOIs
StatePublished - Dec 2024

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Molecular architecture of the mammalian 2-oxoglutarate dehydrogenase complex'. Together they form a unique fingerprint.

Cite this