Monolithic Perovskite/Silicon Tandems with >28% Efficiency: Role of Silicon-Surface Texture on Perovskite Properties

Michele De Bastiani*, Rawan Jalmood, Jiang Liu, Christina Ossig, Aleš Vlk, Karol Vegso, Maxime Babics, Furkan H. Isikgor, Anand S. Selvin, Randi Azmi, Esma Ugur, Swarnendu Banerjee, Alessandro J. Mirabelli, Erkan Aydin, Thomas G. Allen, Atteq Ur Rehman, Emmanuel Van Kerschaver, Peter Siffalovic, Michael E. Stuckelberger, Martin LedinskyStefaan De Wolf*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Textured silicon wafers used in silicon solar cell manufacturing offer superior light trapping, which is a critical enabler for high-performance photovoltaics. A similar optical benefit can be obtained in monolithic perovskite/silicon tandem solar cells, enhancing the current output of the silicon bottom cell. Yet, such complex silicon surfaces may affect the structural and optoelectronic properties of the overlying perovskite films. Here, through extensive characterization based on optical and microstructural spectroscopy, it is found that the main effect of such substrate morphology lies in an altering of the photoluminescence response of the perovskite, which is associated with thickness variations of the perovskite, rather than lattice strain or compositional changes. With this understanding, the design of high-performance perovskite/silicon tandems is rationalized, yielding certified power conversion efficiencies of >28%.

Original languageEnglish (US)
Article number2205557
JournalAdvanced Functional Materials
Volume33
Issue number4
DOIs
StatePublished - Jan 20 2023

Keywords

  • current matching
  • perovskite photovoltaics
  • perovskite/silicon tandem solar cells
  • silicon heterojunction solar cells
  • silicon texturing

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • General Chemistry
  • Biomaterials
  • General Materials Science
  • Condensed Matter Physics
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Monolithic Perovskite/Silicon Tandems with >28% Efficiency: Role of Silicon-Surface Texture on Perovskite Properties'. Together they form a unique fingerprint.

Cite this