Monotone Multigrid Methods Based on Parametric Finite Elements

Thomas Dickopf*, Rolf Krause

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

Abstract

In this paper, a particular technique for the application of elementary multilevel ideas to problems with warped boundaries is studied in the context of the numerical simulation of elastic contact problems. Combining a general multilevel setting with a different perspective, namely an advanced geometric modeling point of view, we present a (monotone) multigrid method based on a hierarchy of parametric finite element spaces. For the construction, a full-dimensional parameterization of high order is employed which accurately represents the computational domain.The purpose of the volume parametric finite element discretization put forward here is two-fold. On the one hand, it allows for an elegant multilevel hierarchy to be used in preconditioners. On the other hand, it comes with particular advantages for the modeling of contact problems. After all, the long-term objective lies in an increased flexibility of h p-adaptive methods for contact problems.

Original languageEnglish (US)
Title of host publicationDomain Decomposition Methods in Science and Engineering XX
EditorsRandolph Bank, Michael Holst, Jinchao Xu, Olof Widlund
Pages321-328
Number of pages8
DOIs
StatePublished - 2013

Publication series

NameLecture Notes in Computational Science and Engineering
Volume91
ISSN (Print)1439-7358

ASJC Scopus subject areas

  • Modeling and Simulation
  • General Engineering
  • Discrete Mathematics and Combinatorics
  • Control and Optimization
  • Computational Mathematics

Fingerprint

Dive into the research topics of 'Monotone Multigrid Methods Based on Parametric Finite Elements'. Together they form a unique fingerprint.

Cite this