Multi-Inputs and Multi-Outputs Mems Resonator for Complex Logic Operations

Sherif Adekunle Tella, Mohammad I. Younis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Microelectromechanical systems MEMS resonatorbased computing devices have recently attracted significant attention due to their simplicity and potential toward energy efficient computing machines. Lately, there have been successful demonstrations of fundamental logic gates. However, the realization of complex multifunctional logic gates that require multi-input and multi-output lines have faced some obstacles, such as the interconnections between multiple resonators and the increase in device complexity due to the large required arrays of resonators. This paper demonstrates a 1:2 demux combinational logic gate from the first and the second vibrational modes of a single MEMS microstructure. The MEMS device consists of three connected inplane microbeams forming a U-shape. The microbeams can be electrostatically actuated individually or collectively.
Original languageEnglish (US)
Title of host publication2019 IEEE SENSORS
PublisherIEEE
ISBN (Print)9781728116341
DOIs
StatePublished - Jan 15 2020

Fingerprint

Dive into the research topics of 'Multi-Inputs and Multi-Outputs Mems Resonator for Complex Logic Operations'. Together they form a unique fingerprint.

Cite this