Multiclass latent locally linear support vector machines

Marco Fornoni, Barbara Caputo, Francesco Orabona

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Scopus citations

Abstract

Kernelized Support Vector Machines (SVM) have gained the status of off-the-shelf classifiers, able to deliver state of the art performance on almost any problem. Still, their practical use is constrained by their computational and memory complexity, which grows super-linearly with the number of training samples. In order to retain the low training and testing complexity of linear classifiers and the exibility of non linear ones, a growing, promising alternative is represented by methods that learn non-linear classifiers through local combinations of linear ones. In this paper we propose a new multi class local classifier, based on a latent SVM formulation. The proposed classifier makes use of a set of linear models that are linearly combined using sample and class specific weights. Thanks to the latent formulation, the combination coefficients are modeled as latent variables. We allow soft combinations and we provide a closed-form solution for their estimation, resulting in an efficient prediction rule. This novel formulation allows to learn in a principled way the sample specific weights and the linear classifiers, in a unique optimization problem, using a CCCP optimization procedure. Extensive experiments on ten standard UCI machine learning datasets, one large binary dataset, three character and digit recognition databases, and a visual place categorization dataset show the power of the proposed approach.
Original languageEnglish (US)
Title of host publicationJournal of Machine Learning Research
PublisherMicrotome [email protected]
Pages229-244
Number of pages16
StatePublished - Jan 1 2013
Externally publishedYes

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Statistics and Probability
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Multiclass latent locally linear support vector machines'. Together they form a unique fingerprint.

Cite this