Multimodal Carbonates: Distribution of Oil Saturation in the Microporous Regions of Arab Formations

Tadeusz W. Patzek*, Ahmed M. Saad, Ahmed Hassan

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Perhaps as much as 50% of the oil-in-place in carbonate formations around the world is locked away in the easy to bypass microporosity. If some of this oil is unlocked by the improved recovery processes focused on tight carbonate formations, the world may gain a major source of lower-rate power over several decades. Here, we overview the Arab D formation in the largest oil field on earth, the Ghawar. We investigate the occurrence of microporosity of different origins and sizes using scanning electron microscopy (SEM) and pore casting techniques. Then, we present a robust calculation of the probability of invasion and oil saturation distribution in the nested micropores using mercury injection capillary pressure data available in the literature. We show that large portions of the micropores in Arab D formation would have been bypassed during primary drainage unless the invading crude oil ganglia were sufficiently long. We also show that, under prevailing conditions of primary drainage of the strongly water-wet Arab formations in the Ghawar, the microporosity there was invaded and the porosity-weighted initial oil saturations of 60–85% are expected. Considering the asphaltenic nature of crude oil in the Ghawar, we expect the invaded portions of the pores to turn mixed-wet, thus becoming inaccessible to waterflooding until further measures are taken to modify the system’s surface chemistry and/or create substantial local pore pressure gradients.

Original languageEnglish (US)
Article number1243
JournalEnergies
Volume15
Issue number3
DOIs
StatePublished - Feb 1 2022

Keywords

  • Capillary invasion
  • IOR
  • Microporosity
  • Mixed wettability
  • Multimodal porosity
  • Primary drainage
  • Tight carbonates

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Energy (miscellaneous)
  • Control and Optimization
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Multimodal Carbonates: Distribution of Oil Saturation in the Microporous Regions of Arab Formations'. Together they form a unique fingerprint.

Cite this