TY - JOUR
T1 - Multivariate extended skew-t distributions and related families
AU - Arellano-Valle, Reinaldo B.
AU - Genton, Marc G.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-C1-016-04
Acknowledgements: The first author was partially supported by grant FONDECYT 1085241-Chile. The second authorwas partially supported by NSF grants DMS-0504896, CMG ATM-0620624, and by Award No.KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2012/12/22
Y1 - 2012/12/22
N2 - A class of multivariate extended skew-t (EST) distributions is introduced and studied in detail, along with closely related families such as the subclass of extended skew-normal distributions. Besides mathematical tractability and modeling flexibility in terms of both skewness and heavier tails than the normal distribution, the most relevant properties of the EST distribution include closure under conditioning and ability to model lighter tails as well. The first part of the present paper examines probabilistic properties of the EST distribution, such as various stochastic representations, marginal and conditional distributions, linear transformations, moments and in particular Mardia’s measures of multivariate skewness and kurtosis. The second part of the paper studies statistical properties of the EST distribution, such as likelihood inference, behavior of the profile log-likelihood, the score vector and the Fisher information matrix. Especially, unlike the extended skew-normal distribution, the Fisher information matrix of the univariate EST distribution is shown to be non-singular when the skewness is set to zero. Finally, a numerical application of the conditional EST distribution is presented in the context of confidential data perturbation.
AB - A class of multivariate extended skew-t (EST) distributions is introduced and studied in detail, along with closely related families such as the subclass of extended skew-normal distributions. Besides mathematical tractability and modeling flexibility in terms of both skewness and heavier tails than the normal distribution, the most relevant properties of the EST distribution include closure under conditioning and ability to model lighter tails as well. The first part of the present paper examines probabilistic properties of the EST distribution, such as various stochastic representations, marginal and conditional distributions, linear transformations, moments and in particular Mardia’s measures of multivariate skewness and kurtosis. The second part of the paper studies statistical properties of the EST distribution, such as likelihood inference, behavior of the profile log-likelihood, the score vector and the Fisher information matrix. Especially, unlike the extended skew-normal distribution, the Fisher information matrix of the univariate EST distribution is shown to be non-singular when the skewness is set to zero. Finally, a numerical application of the conditional EST distribution is presented in the context of confidential data perturbation.
UR - http://hdl.handle.net/10754/598921
UR - http://link.springer.com/10.1007/BF03263536
UR - http://www.scopus.com/inward/record.url?scp=77249178612&partnerID=8YFLogxK
U2 - 10.1007/BF03263536
DO - 10.1007/BF03263536
M3 - Article
AN - SCOPUS:77249178612
SN - 0026-1424
VL - 68
SP - 201
EP - 234
JO - Metron
JF - Metron
IS - 3
ER -