TY - JOUR
T1 - MXene hydrogels: fundamentals and applications
AU - Zhang, Yi Zhou
AU - El Demellawi, Jehad K.
AU - Jiang, Qiu
AU - Ge, Gang
AU - Liang, Hanfeng
AU - Lee, Kanghyuck
AU - Dong, Xiaochen
AU - Alshareef, Husam N.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The research reported in this publication is supported by King Abdullah University of Science & Technology (KAUST). The Natural Science Foundation of Jiangsu Province (BK20170999) and The National Natural Science Foundation of China (21805136) are also acknowledged.
PY - 2020/9/16
Y1 - 2020/9/16
N2 - Hydrogels have recently garnered tremendous interest due to their potential application in soft electronics, human–machine interfaces, sensors, actuators, and flexible energy storage. Benefiting from their impressive combination of hydrophilicity, metallic conductivity, high aspect ratio morphology, and widely tuneable properties, when two-dimensional (2D) transition metal carbides/nitrides (MXenes) are incorporated into hydrogel systems, they offer exciting and versatile platforms for the design of MXene-based soft materials with tunable application-specific properties. The intriguing and, in some cases, unique properties of MXene hydrogels are governed by complex gel structures and gelation mechanisms, which require in-depth investigation and engineering at the nanoscale. On the other hand, the formulation of MXenes into hydrogels can significantly increase the stability of MXenes, which is often the limiting factor for many MXene-based applications. Moreover, through simple treatments, derivatives of MXene hydrogels, such as aerogels, can be obtained, further expanding their versatility. This tutorial review intends to show the enormous potential of MXene hydrogels in expanding the application range of both hydrogels and MXenes, as well as increasing the performance of MXene-based devices. We elucidate the existing structures of various MXene-containing hydrogel systems along with their gelation mechanisms and the interconnecting driving forces. We then discuss their distinctive properties stemming from the integration of MXenes into hydrogels, which have revealed an enhanced performance, compared to either MXenes or hydrogels alone, in many applications (energy storage/harvesting, biomedicine, catalysis, electromagnetic interference shielding, and sensing).
AB - Hydrogels have recently garnered tremendous interest due to their potential application in soft electronics, human–machine interfaces, sensors, actuators, and flexible energy storage. Benefiting from their impressive combination of hydrophilicity, metallic conductivity, high aspect ratio morphology, and widely tuneable properties, when two-dimensional (2D) transition metal carbides/nitrides (MXenes) are incorporated into hydrogel systems, they offer exciting and versatile platforms for the design of MXene-based soft materials with tunable application-specific properties. The intriguing and, in some cases, unique properties of MXene hydrogels are governed by complex gel structures and gelation mechanisms, which require in-depth investigation and engineering at the nanoscale. On the other hand, the formulation of MXenes into hydrogels can significantly increase the stability of MXenes, which is often the limiting factor for many MXene-based applications. Moreover, through simple treatments, derivatives of MXene hydrogels, such as aerogels, can be obtained, further expanding their versatility. This tutorial review intends to show the enormous potential of MXene hydrogels in expanding the application range of both hydrogels and MXenes, as well as increasing the performance of MXene-based devices. We elucidate the existing structures of various MXene-containing hydrogel systems along with their gelation mechanisms and the interconnecting driving forces. We then discuss their distinctive properties stemming from the integration of MXenes into hydrogels, which have revealed an enhanced performance, compared to either MXenes or hydrogels alone, in many applications (energy storage/harvesting, biomedicine, catalysis, electromagnetic interference shielding, and sensing).
UR - http://hdl.handle.net/10754/665383
UR - http://xlink.rsc.org/?DOI=D0CS00022A
U2 - 10.1039/d0cs00022a
DO - 10.1039/d0cs00022a
M3 - Article
C2 - 32936169
SN - 0306-0012
JO - Chemical Society Reviews
JF - Chemical Society Reviews
ER -