TY - JOUR
T1 - N -annulated perylene as an efficient electron donor for porphyrin-based dyes: Enhanced light-harvesting ability and high-efficiency Co(II/III)-based dye-sensitized solar cells
AU - Luo, Jie
AU - Xu, Mingfei
AU - Li, Renzhi
AU - Huang, Kuo-Wei
AU - Jiang, Changyun
AU - Qi, Qingbiao
AU - Zeng, Wangdong
AU - Zhang, Jie
AU - Chi, Chunyan
AU - Wang, Peng
AU - Wu, Jishan
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: J.W. acknowledges financial support from the IMRE Core Funding (IMRE/13-1C0205) and MOE Tier 2 grant (MOE2011-T2-2-130). P.W. thanks the National 973 Program (No. 2011CBA00702) and the National Science Foundation of China (No. 51203150). K.-W.H. acknowledges financial support from KAUST.
PY - 2013/12/24
Y1 - 2013/12/24
N2 - Porphyrin-based dyes recently have become good candidates for dye-sensitized solar cells (DSCs). However, the bottleneck is how to further improve their light-harvesting ability. In this work, N-annulated perylene (NP) was used to functionalize the Zn-porphyrin, and four "push-pull"-type NP-substituted and fused porphyrin dyes with intense absorption in the visible and even in the near-infrared (NIR) region were synthesized. Co(II/III)-based DSC device characterizations revealed that dyes WW-5 and WW-6, in which an ethynylene spacer is incorporated between the NP and porphyrin core, showed pantochromatic photon-to-current conversion efficiency action spectra in the visible and NIR region, with a further red-shift of about 90 and 60 nm, respectively, compared to the benchmark molecule YD2-o-C8. As a result, the short-circuit current density was largely increased, and the devices displayed power conversion efficiencies as high as 10.3% and 10.5%, respectively, which is comparable to that of the YD2-o-C8 cell (η = 10.5%) under the same conditions. On the other hand, the dye WW-3 in which the NP unit is directly attached to the porphyrin core showed a moderate power conversion efficiency (η = 5.6%) due to the inefficient π-conjugation, and the NP-fused dye WW-4 exhibited even poorer performance due to its low-lying LUMO energy level and nondisjointed HOMO/LUMO profile. Our detailed physical measurements (optical and electrochemical), density functional theory calculations, and photovoltaic characterizations disclosed that the energy level alignment, the molecular orbital profile, and dye aggregation all played very important roles on the interface electron transfer and charge recombination kinetics. © 2013 American Chemical Society.
AB - Porphyrin-based dyes recently have become good candidates for dye-sensitized solar cells (DSCs). However, the bottleneck is how to further improve their light-harvesting ability. In this work, N-annulated perylene (NP) was used to functionalize the Zn-porphyrin, and four "push-pull"-type NP-substituted and fused porphyrin dyes with intense absorption in the visible and even in the near-infrared (NIR) region were synthesized. Co(II/III)-based DSC device characterizations revealed that dyes WW-5 and WW-6, in which an ethynylene spacer is incorporated between the NP and porphyrin core, showed pantochromatic photon-to-current conversion efficiency action spectra in the visible and NIR region, with a further red-shift of about 90 and 60 nm, respectively, compared to the benchmark molecule YD2-o-C8. As a result, the short-circuit current density was largely increased, and the devices displayed power conversion efficiencies as high as 10.3% and 10.5%, respectively, which is comparable to that of the YD2-o-C8 cell (η = 10.5%) under the same conditions. On the other hand, the dye WW-3 in which the NP unit is directly attached to the porphyrin core showed a moderate power conversion efficiency (η = 5.6%) due to the inefficient π-conjugation, and the NP-fused dye WW-4 exhibited even poorer performance due to its low-lying LUMO energy level and nondisjointed HOMO/LUMO profile. Our detailed physical measurements (optical and electrochemical), density functional theory calculations, and photovoltaic characterizations disclosed that the energy level alignment, the molecular orbital profile, and dye aggregation all played very important roles on the interface electron transfer and charge recombination kinetics. © 2013 American Chemical Society.
UR - http://hdl.handle.net/10754/563332
UR - https://pubs.acs.org/doi/10.1021/ja409291g
UR - http://www.scopus.com/inward/record.url?scp=84892178966&partnerID=8YFLogxK
U2 - 10.1021/ja409291g
DO - 10.1021/ja409291g
M3 - Article
SN - 0002-7863
VL - 136
SP - 265
EP - 272
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 1
ER -