TY - JOUR
T1 - Nafion–clay hybrids with a network structure
AU - Burgaz, Engin
AU - Lian, Huiqin
AU - Alonso, Rafael Herrera
AU - Estevez, Luis
AU - Kelarakis, Antonios
AU - Giannelis, Emmanuel P.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-C1-018-02
Acknowledgements: EPG acknowledges the support of Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2009/5
Y1 - 2009/5
N2 - Nafion-clay hybrid membranes with a unique microstructure were synthesized using a fundamentally new approach. The new approach is based on depletion aggregation of suspended particles - a well-known phenomenon in colloids. For certain concentrations of clay and polymer, addition of Nafion solution to clay suspensions in water leads to a gel. Using Cryo-TEM we show that the clay particles in the hybrid gels form a network structure with an average cell size in the order of 500 nm. The hybrid gels are subsequently cast to produce hybrid Nafion-clay membranes. Compared to pure Nafion the swelling of the hybrid membranes in water and methanol is dramatically reduced while their selectivity (ratio of conductivity over permeability) increases. The small decrease of ionic conductivity for the hybrid membranes is more than compensated by the large decrease in methanol permeability. Lastly the hybrid membranes are much stiffer and can withstand higher temperatures compared to pure Nafion. Both of these characteristics are highly desirable for use in fuel cell applications, since a) they will allow the use of a thinner membrane circumventing problems associated with the membrane resistance and b) enable high temperature applications. © 2009 Elsevier Ltd. All rights reserved.
AB - Nafion-clay hybrid membranes with a unique microstructure were synthesized using a fundamentally new approach. The new approach is based on depletion aggregation of suspended particles - a well-known phenomenon in colloids. For certain concentrations of clay and polymer, addition of Nafion solution to clay suspensions in water leads to a gel. Using Cryo-TEM we show that the clay particles in the hybrid gels form a network structure with an average cell size in the order of 500 nm. The hybrid gels are subsequently cast to produce hybrid Nafion-clay membranes. Compared to pure Nafion the swelling of the hybrid membranes in water and methanol is dramatically reduced while their selectivity (ratio of conductivity over permeability) increases. The small decrease of ionic conductivity for the hybrid membranes is more than compensated by the large decrease in methanol permeability. Lastly the hybrid membranes are much stiffer and can withstand higher temperatures compared to pure Nafion. Both of these characteristics are highly desirable for use in fuel cell applications, since a) they will allow the use of a thinner membrane circumventing problems associated with the membrane resistance and b) enable high temperature applications. © 2009 Elsevier Ltd. All rights reserved.
UR - http://hdl.handle.net/10754/598931
UR - https://linkinghub.elsevier.com/retrieve/pii/S0032386109002754
UR - http://www.scopus.com/inward/record.url?scp=65549121654&partnerID=8YFLogxK
U2 - 10.1016/j.polymer.2009.03.042
DO - 10.1016/j.polymer.2009.03.042
M3 - Article
SN - 0032-3861
VL - 50
SP - 2384
EP - 2392
JO - Polymer
JF - Polymer
IS - 11
ER -