TY - JOUR
T1 - Nanocrystalline Silicon Carrier Collectors for Silicon Heterojunction Solar Cells and Impact on Low-Temperature Device Characteristics
AU - Nogay, Gizem
AU - Seif, Johannes Peter
AU - Riesen, Yannick
AU - Tomasi, Andrea
AU - Jeangros, Quentin
AU - Wyrsch, Nicolas
AU - Haug, Franz-Josef
AU - De Wolf, Stefaan
AU - Ballif, Christophe
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The Interdisciplinary Center for Electron Microscopy of EPFL is acknowledged for the use of the electron microscopes. The authors would like to acknowledge L. Barraud, J. Geissbuhler, and P. Loper for support and fruitful discussions.
PY - 2016/9/26
Y1 - 2016/9/26
N2 - Silicon heterojunction solar cells typically use stacks of hydrogenated intrinsic/doped amorphous silicon layers as carrier selective contacts. However, the use of these layers may cause parasitic optical absorption losses and moderate fill factor (FF) values due to a high contact resistivity. In this study, we show that the replacement of doped amorphous silicon with nanocrystalline silicon is beneficial for device performance. Optically, we observe an improved short-circuit current density when these layers are applied to the front side of the device. Electrically, we observe a lower contact resistivity, as well as higher FF. Importantly, our cell parameter analysis, performed in a temperature range from -100 to +80 °C, reveals that the use of hole-collecting p-type nanocrystalline layer suppresses the carrier transport barrier, maintaining FF s in the range of 70% at -100 °C, whereas it drops to 40% for standard amorphous doped layers. The same analysis also reveals a saturation onset of the open-circuit voltage at -100 °C using doped nanocrystalline layers, compared with saturation onset at -60 °C for doped amorphous layers. These findings hint at a reduced importance of the parasitic Schottky barrier at the interface between the transparent electrodes and the selective contact in the case of nanocrystalline layer implementation. © 2011-2012 IEEE.
AB - Silicon heterojunction solar cells typically use stacks of hydrogenated intrinsic/doped amorphous silicon layers as carrier selective contacts. However, the use of these layers may cause parasitic optical absorption losses and moderate fill factor (FF) values due to a high contact resistivity. In this study, we show that the replacement of doped amorphous silicon with nanocrystalline silicon is beneficial for device performance. Optically, we observe an improved short-circuit current density when these layers are applied to the front side of the device. Electrically, we observe a lower contact resistivity, as well as higher FF. Importantly, our cell parameter analysis, performed in a temperature range from -100 to +80 °C, reveals that the use of hole-collecting p-type nanocrystalline layer suppresses the carrier transport barrier, maintaining FF s in the range of 70% at -100 °C, whereas it drops to 40% for standard amorphous doped layers. The same analysis also reveals a saturation onset of the open-circuit voltage at -100 °C using doped nanocrystalline layers, compared with saturation onset at -60 °C for doped amorphous layers. These findings hint at a reduced importance of the parasitic Schottky barrier at the interface between the transparent electrodes and the selective contact in the case of nanocrystalline layer implementation. © 2011-2012 IEEE.
UR - http://hdl.handle.net/10754/622569
UR - http://ieeexplore.ieee.org/document/7576721/
UR - http://www.scopus.com/inward/record.url?scp=84994750373&partnerID=8YFLogxK
U2 - 10.1109/JPHOTOV.2016.2604574
DO - 10.1109/JPHOTOV.2016.2604574
M3 - Article
SN - 2156-3381
VL - 6
SP - 1654
EP - 1662
JO - IEEE Journal of Photovoltaics
JF - IEEE Journal of Photovoltaics
IS - 6
ER -