TY - JOUR
T1 - Nanofibrous membranes comprising intrinsically microporous polyimides with embedded metal–organic frameworks for capturing volatile organic compounds
AU - Topuz, Fuat
AU - Abdulhamid, Mahmoud A.
AU - Hardian, Rifan
AU - Holtzl, Tibor
AU - Szekely, Gyorgy
N1 - KAUST Repository Item: Exported on 2021-09-27
Acknowledgements: FT, MAA, and RH gratefully acknowledge the postdoctoral fellowships from the King Abdullah University of Science and Technology (KAUST). The research reported in this publication was supported by funding from KAUST.
PY - 2021/9/25
Y1 - 2021/9/25
N2 - Here, we report the fabrication of nanofibrous air-filtration membranes of intrinsically microporous polyimide with metal–organic frameworks (MOFs). The membranes successfully captured VOCs from air. Two polyimides with surface areas up to 500 m2 g −1 were synthesized, and the impact of the porosity on the sorption kinetics and capacity of the nanofibers was investigated. Two Zr-based MOFs, namely pristine UiO-66 (1071 m2 g −1 ) and defective UiO-66 (1582 m2 g −1 ), were embedded into the nanofibers to produce nanocomposite materials. The nanofibers could remove polar formaldehyde and non-polar toluene, xylene, and mesitylene from air. The highest sorption capacity with 214 mg g−1 was observed for xylene, followed by mesitylene (201 mg g−1 ), toluene (142 mg g−1 ), and formaldehyde (124 mg g−1 ). The incorporation of MOFs drastically improved the sorption performance of the fibers produced from low-surface-area polyimide. Time-dependent sorption tests revealed the rapid sequestration of air pollutants owing to the intrinsic porosity of the polyimides and the MOF fillers. The porosity allowed the rapid diffusion of pollutants into the inner fiber matrix. The molecular level interactions between VOCs and polymer/MOFs were clarified by molecular modeling studies. The practicality of material fabrication and the applicability of the material were assessed through the modification of industrial N95 dust masks. To the best of our knowledge, this is the first successful demonstration of the synergistic combination of intrinsically microporous polyimides and MOFs in the form of electrospun nanofibrous membranes and their application for VOC removal.
AB - Here, we report the fabrication of nanofibrous air-filtration membranes of intrinsically microporous polyimide with metal–organic frameworks (MOFs). The membranes successfully captured VOCs from air. Two polyimides with surface areas up to 500 m2 g −1 were synthesized, and the impact of the porosity on the sorption kinetics and capacity of the nanofibers was investigated. Two Zr-based MOFs, namely pristine UiO-66 (1071 m2 g −1 ) and defective UiO-66 (1582 m2 g −1 ), were embedded into the nanofibers to produce nanocomposite materials. The nanofibers could remove polar formaldehyde and non-polar toluene, xylene, and mesitylene from air. The highest sorption capacity with 214 mg g−1 was observed for xylene, followed by mesitylene (201 mg g−1 ), toluene (142 mg g−1 ), and formaldehyde (124 mg g−1 ). The incorporation of MOFs drastically improved the sorption performance of the fibers produced from low-surface-area polyimide. Time-dependent sorption tests revealed the rapid sequestration of air pollutants owing to the intrinsic porosity of the polyimides and the MOF fillers. The porosity allowed the rapid diffusion of pollutants into the inner fiber matrix. The molecular level interactions between VOCs and polymer/MOFs were clarified by molecular modeling studies. The practicality of material fabrication and the applicability of the material were assessed through the modification of industrial N95 dust masks. To the best of our knowledge, this is the first successful demonstration of the synergistic combination of intrinsically microporous polyimides and MOFs in the form of electrospun nanofibrous membranes and their application for VOC removal.
UR - http://hdl.handle.net/10754/671930
UR - https://doi.org/10.1016/j.jhazmat.2021.127347
U2 - 10.1016/j.jhazmat.2021.127347
DO - 10.1016/j.jhazmat.2021.127347
M3 - Article
C2 - 34607032
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
ER -