TY - JOUR
T1 - Nanometric Graphene Oxide Framework Membranes with Enhanced Heavy Metal Removal via Nanofiltration
AU - Zhang, Yu
AU - Zhang, Sui
AU - Chung, Tai-Shung
PY - 2015/7/21
Y1 - 2015/7/21
N2 - A novel dual-modification strategy, including (1) the cross-linking and construction of a GO framework by ethylenediamine (EDA) and (2) the amine-enrichment modification by hyperbranched polyethylenimine (HPEI), has been proposed to design stable and highly charged GO framework membranes with the GO selective layer thickness of 70 nm for effective heave metal removal via nanofiltration (NF). Results from sonication experiments and positron annihilation spectroscopy confirmed that EDA cross-linking not only enhanced structural stability but also enlarged the nanochannels among the laminated GO nanosheets for higher water permeability. HPEI 60K was found to be the most effective post-treatment agent that resulted in GO framework membranes with a higher surface charge and lower transport resistance. The newly developed membrane exhibited a high pure water permeability of 5.01 L m-2 h-1 bar-1 and comparably high rejections toward Mg2+, Pb2+, Ni2+, Cd2+, and Zn2+. These results have demonstrated the great potential of GO framework materials in wastewater treatment and may provide insights for the design and fabrication of the next generation two-dimensional (2D)-based NF membranes.
AB - A novel dual-modification strategy, including (1) the cross-linking and construction of a GO framework by ethylenediamine (EDA) and (2) the amine-enrichment modification by hyperbranched polyethylenimine (HPEI), has been proposed to design stable and highly charged GO framework membranes with the GO selective layer thickness of 70 nm for effective heave metal removal via nanofiltration (NF). Results from sonication experiments and positron annihilation spectroscopy confirmed that EDA cross-linking not only enhanced structural stability but also enlarged the nanochannels among the laminated GO nanosheets for higher water permeability. HPEI 60K was found to be the most effective post-treatment agent that resulted in GO framework membranes with a higher surface charge and lower transport resistance. The newly developed membrane exhibited a high pure water permeability of 5.01 L m-2 h-1 bar-1 and comparably high rejections toward Mg2+, Pb2+, Ni2+, Cd2+, and Zn2+. These results have demonstrated the great potential of GO framework materials in wastewater treatment and may provide insights for the design and fabrication of the next generation two-dimensional (2D)-based NF membranes.
UR - http://www.scopus.com/inward/record.url?scp=84939634075&partnerID=8YFLogxK
U2 - 10.1021/acs.est.5b02086
DO - 10.1021/acs.est.5b02086
M3 - Article
C2 - 26197200
AN - SCOPUS:84939634075
SN - 0013-936X
VL - 49
SP - 10235
EP - 10242
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 16
ER -