TY - JOUR
T1 - Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material
AU - Noh, Jun Hong
AU - Jeon, Nam Joong
AU - Choi, Yong Chan
AU - Nazeeruddin, Md. K.
AU - Grätzel, Michael
AU - Seok, Sang Il
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This study was supported by the Global Research Laboratory (GRL) Program and the Global Frontier R&D Program on Center for Multiscale Energy System funded by the National Research Foundation under the Ministry of Education, Science and Technology of Korea, and by a grant from the KRICT 2020 Program for Future Technology of the Korea Research Institute of Chemical Technology (KRICT), Republic of Korea. MKN thanks the Center for Advanced Molecular Photovoltaics (Award No KUS-C1-015- 21). MG thanks the "CE-Mesolight" EPFL ECR advanced grant agreement No. 247404, and the King Abdullah University of Science and Technology (KAUST) for financial support.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2013
Y1 - 2013
N2 - For using 2,2′,7,7′-tetrakis(N,N′-di-p- methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) as a hole conductor in solar cells, it is necessary to improve its charge-transport properties through electrochemical doping. With the aim of fabricating efficient mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells, we used tris[2-(1H-pyrazol-1-yl)-4-tert- butylpyridine)cobalt(iii) tris(bis(trifluoromethylsulfonyl) imide)] (FK209) as a p-dopant for spiro-OMeTAD. The mixture of spiro-OMeTAD, FK209, lithium bis(trifluoromethylsulfonyl)imide (Li-TFSI), and 4-tert-butylpyridine (TBP) exhibited significantly higher performance than mixtures of pristine spiro-OMeTAD, spiro-OMeTAD, and FK209, and spiro-OMeTAD, Li-TFSI, and TBP. Such a synergistic effect between the Co-complex and Li-TFSI in conjunction with spiro-OMeTAD effectively improved the power conversion efficiency (PCE) of the fabricated solar cells. As a result, we achieved PCE of 10.4%, measured under standard solar conditions (AM 1.5G, 100 mW cm-2). © 2013 The Royal Society of Chemistry.
AB - For using 2,2′,7,7′-tetrakis(N,N′-di-p- methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) as a hole conductor in solar cells, it is necessary to improve its charge-transport properties through electrochemical doping. With the aim of fabricating efficient mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells, we used tris[2-(1H-pyrazol-1-yl)-4-tert- butylpyridine)cobalt(iii) tris(bis(trifluoromethylsulfonyl) imide)] (FK209) as a p-dopant for spiro-OMeTAD. The mixture of spiro-OMeTAD, FK209, lithium bis(trifluoromethylsulfonyl)imide (Li-TFSI), and 4-tert-butylpyridine (TBP) exhibited significantly higher performance than mixtures of pristine spiro-OMeTAD, spiro-OMeTAD, and FK209, and spiro-OMeTAD, Li-TFSI, and TBP. Such a synergistic effect between the Co-complex and Li-TFSI in conjunction with spiro-OMeTAD effectively improved the power conversion efficiency (PCE) of the fabricated solar cells. As a result, we achieved PCE of 10.4%, measured under standard solar conditions (AM 1.5G, 100 mW cm-2). © 2013 The Royal Society of Chemistry.
UR - http://hdl.handle.net/10754/598956
UR - http://xlink.rsc.org/?DOI=c3ta12681a
UR - http://www.scopus.com/inward/record.url?scp=84884155081&partnerID=8YFLogxK
U2 - 10.1039/c3ta12681a
DO - 10.1039/c3ta12681a
M3 - Article
SN - 2050-7488
VL - 1
SP - 11842
JO - Journal of Materials Chemistry A
JF - Journal of Materials Chemistry A
IS - 38
ER -