TY - GEN
T1 - Natural frequencies and mode shapes of slacked carbon nanotube NEMS resonators
AU - Ouakad, Hassen M.
AU - Younis, Mohammad I.
PY - 2010
Y1 - 2010
N2 - Estimating accurately the natural frequencies of electrically actuated carbon nanotubes (CNTs) has been the center of research attention over the past few years. Despite this important topic, a robust knowledge is still missing to understand the role of various physical parameters that affect the natural frequencies, such as the stretching of doubly-clamped CNTs, the DC electrostatic force, and the curvature of CNTs with slacks. In this investigation, we use a 2D nonlinear curved beam model (arch) to simulate the coupled in-plane and the out-of-plane motions of a CNT with curvature (slack). We calculate the variation of its natural frequencies and mode-shapes with the level of slack and the DC electrostatic load. Toward this, we derive a reduced-order model using a multi-mode Galerkin procedure based on the mode shapes of the straight unactuated CNT. We calculate the natural frequencies of the slacked CNT for a given voltage by substituting the static solution into the Jacobian of the reduced-order-model and then finding the corresponding eigenvalues. We show various scenarios of mode crossing and mode veering as the levels of slack and DC load are varied.
AB - Estimating accurately the natural frequencies of electrically actuated carbon nanotubes (CNTs) has been the center of research attention over the past few years. Despite this important topic, a robust knowledge is still missing to understand the role of various physical parameters that affect the natural frequencies, such as the stretching of doubly-clamped CNTs, the DC electrostatic force, and the curvature of CNTs with slacks. In this investigation, we use a 2D nonlinear curved beam model (arch) to simulate the coupled in-plane and the out-of-plane motions of a CNT with curvature (slack). We calculate the variation of its natural frequencies and mode-shapes with the level of slack and the DC electrostatic load. Toward this, we derive a reduced-order model using a multi-mode Galerkin procedure based on the mode shapes of the straight unactuated CNT. We calculate the natural frequencies of the slacked CNT for a given voltage by substituting the static solution into the Jacobian of the reduced-order-model and then finding the corresponding eigenvalues. We show various scenarios of mode crossing and mode veering as the levels of slack and DC load are varied.
UR - http://www.scopus.com/inward/record.url?scp=80055012806&partnerID=8YFLogxK
U2 - 10.1115/DETC2010-29024
DO - 10.1115/DETC2010-29024
M3 - Conference contribution
AN - SCOPUS:80055012806
SN - 9780791844120
T3 - Proceedings of the ASME Design Engineering Technical Conference
SP - 645
EP - 652
BT - ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010
T2 - ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010
Y2 - 15 August 2010 through 18 August 2010
ER -