TY - JOUR
T1 - New cross-linked poly(methyl methacrylate): Synthesis, characterization, and inhibitory effects against selected bacteria and cancer cells
AU - Altowairki, Hanan
AU - Basingab, Fatemah S.
AU - Abdullah, Samaa T.
AU - Hussein, Mahmoud A.
AU - Hadjichristidis, Nikos
AU - Alkayal, Nazeeha
N1 - KAUST Repository Item: Exported on 2022-05-13
Acknowledgements: Supported by King Abdullah University of Science and Technology (KAUST), and King Abdulaziz University, Saudi Arabia
PY - 2022/5/11
Y1 - 2022/5/11
N2 - Novel cross-linked poly(methyl methacrylate) (PMMA) derivatives with different ratios of crosslinkers (2, 5, 10, 20, 30, 40, and 50 wt%) were synthesized using the condensation method between PMMA and bifunctional amino derivative cross-linkers, o-phenylenediamine (OPD), and m-phenylenediamine (MPD). The final products were tested for antibacterial and anticancer activities. Various techniques were used to characterize the cross-linked polymers. Fourier transform infrared (FTIR) spectroscopy was used to identify interactions between PMMA and diamine derivatives. The scanning electron microscope (SEM) images show that the smooth PMMA surface was totally changed after cross-linking. Thermogravimetric analysis (TGA) results show that when the percentage of cross-linked PMMA (C-PMMA) increased, the decomposition temperature at 25%, 50%, and 75% weight loss increased. C-PMMA/2% OPD, C-PMMA/20% OPD, and C-PMMA/20% MPD have an antibacterial effect on both Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) with an inhibitory zone ranged from 9 to 16 mm. In addition, C-PMMA/2% OPD showed anticancer activities, reducing the number of HepG2 cancer cells significantly. A positive correlation between the concentrations of the product and the reduction of HepG2 cells has been detectedr.
AB - Novel cross-linked poly(methyl methacrylate) (PMMA) derivatives with different ratios of crosslinkers (2, 5, 10, 20, 30, 40, and 50 wt%) were synthesized using the condensation method between PMMA and bifunctional amino derivative cross-linkers, o-phenylenediamine (OPD), and m-phenylenediamine (MPD). The final products were tested for antibacterial and anticancer activities. Various techniques were used to characterize the cross-linked polymers. Fourier transform infrared (FTIR) spectroscopy was used to identify interactions between PMMA and diamine derivatives. The scanning electron microscope (SEM) images show that the smooth PMMA surface was totally changed after cross-linking. Thermogravimetric analysis (TGA) results show that when the percentage of cross-linked PMMA (C-PMMA) increased, the decomposition temperature at 25%, 50%, and 75% weight loss increased. C-PMMA/2% OPD, C-PMMA/20% OPD, and C-PMMA/20% MPD have an antibacterial effect on both Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) with an inhibitory zone ranged from 9 to 16 mm. In addition, C-PMMA/2% OPD showed anticancer activities, reducing the number of HepG2 cancer cells significantly. A positive correlation between the concentrations of the product and the reduction of HepG2 cells has been detectedr.
UR - http://hdl.handle.net/10754/676860
UR - https://onlinelibrary.wiley.com/doi/10.1002/pen.26009
U2 - 10.1002/pen.26009
DO - 10.1002/pen.26009
M3 - Article
SN - 0032-3888
JO - Polymer Engineering & Science
JF - Polymer Engineering & Science
ER -