TY - JOUR
T1 - Nonlinear instability in flagellar dynamics: a novel modulation mechanism in sperm migration?
AU - Gadelha, H.
AU - Gaffney, E. A.
AU - Smith, D. J.
AU - Kirkman-Brown, J. C.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUK-C1-013-04
Acknowledgements: The authors thank Mr Henry Shum for many helpful discussions and Professor John R. Blake for continued insight. H.G. acknowledges the Capes Foundation (Brazilian sponsor) for financial support through grant no. BEX 4676/06-8, and also through the Hester Cordelia Parsons Fund and Timothy Bailey Trust. D.J.S. thanks the Medical Research Council through grant no. G0600178. This publication is based on work supported in part by Award no. KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2010/5/12
Y1 - 2010/5/12
N2 - Throughout biology, cells and organisms use flagella and cilia to propel fluid and achieve motility. The beating of these organelles, and the corresponding ability to sense, respond to and modulate this beat is central to many processes in health and disease. While the mechanics of flagellum-fluid interaction has been the subject of extensive mathematical studies, these models have been restricted to being geometrically linear or weakly nonlinear, despite the high curvatures observed physiologically. We study the effect of geometrical nonlinearity, focusing on the spermatozoon flagellum. For a wide range of physiologically relevant parameters, the nonlinear model predicts that flagellar compression by the internal forces initiates an effective buckling behaviour, leading to a symmetry-breaking bifurcation that causes profound and complicated changes in the waveform and swimming trajectory, as well as the breakdown of the linear theory. The emergent waveform also induces curved swimming in an otherwise symmetric system, with the swimming trajectory being sensitive to head shape-no signalling or asymmetric forces are required. We conclude that nonlinear models are essential in understanding the flagellar waveform in migratory human sperm; these models will also be invaluable in understanding motile flagella and cilia in other systems.
AB - Throughout biology, cells and organisms use flagella and cilia to propel fluid and achieve motility. The beating of these organelles, and the corresponding ability to sense, respond to and modulate this beat is central to many processes in health and disease. While the mechanics of flagellum-fluid interaction has been the subject of extensive mathematical studies, these models have been restricted to being geometrically linear or weakly nonlinear, despite the high curvatures observed physiologically. We study the effect of geometrical nonlinearity, focusing on the spermatozoon flagellum. For a wide range of physiologically relevant parameters, the nonlinear model predicts that flagellar compression by the internal forces initiates an effective buckling behaviour, leading to a symmetry-breaking bifurcation that causes profound and complicated changes in the waveform and swimming trajectory, as well as the breakdown of the linear theory. The emergent waveform also induces curved swimming in an otherwise symmetric system, with the swimming trajectory being sensitive to head shape-no signalling or asymmetric forces are required. We conclude that nonlinear models are essential in understanding the flagellar waveform in migratory human sperm; these models will also be invaluable in understanding motile flagella and cilia in other systems.
UR - http://hdl.handle.net/10754/598991
UR - https://royalsocietypublishing.org/doi/10.1098/rsif.2010.0136
UR - http://www.scopus.com/inward/record.url?scp=78649874046&partnerID=8YFLogxK
U2 - 10.1098/rsif.2010.0136
DO - 10.1098/rsif.2010.0136
M3 - Article
C2 - 20462879
SN - 1742-5689
VL - 7
SP - 1689
EP - 1697
JO - Journal of the Royal Society Interface
JF - Journal of the Royal Society Interface
IS - 53
ER -