TY - JOUR
T1 - Nonlinear Micro-Resonator-Based Comparator With Linear Hysteresis Tuning
AU - zou, xuecui
AU - Ahmed, Sally
AU - Jaber, Nizar
AU - Lu, Haoliang
AU - Fariborzi, Hossein
N1 - KAUST Repository Item: Exported on 2023-07-31
Acknowledgements: This work was supported by the King Abdullah University of Science and Technology (KAUST). The authors would like to thank Hanguang Liao and Yinchang Ma, both students with KAUST, for their valuable contributions to the manuscript preparation.
PY - 2023/7/28
Y1 - 2023/7/28
N2 - In this work, we present the design and experimental demonstration of the first micro-resonator-based tunable hysteresis comparator. The proposed design employs an electrostatically driven clamped-clamped microbeam operated in the nonlinear regime. The design operation is assigned such that both the resonator’s drive frequency and beam bias can be utilized to tune the nonlinear dynamic behavior of the resonator. This tunable nonlinear behavior allows the device to exhibit a hysteretic voltage response with a tunable hysteresis voltage range. In the frequency tuning scheme, the hysteresis range is directly proportional to the driving frequency shift, with a maximum hysteresis portion of 51.4% achievable. In the voltage tuning scheme, the hysteresis range exhibits a linear relationship with the bias voltage variance without compromising tunability. Moreover, the voltage tuning scheme provides a simpler solution as it simplifies the complexity of the control system and provides a better stable and repeatable control capability. The proposed resonator-based comparator has many additional benefits, including stable electrical properties, a long lifetime due to the elimination of physical contact, and a wide tuning hysteresis range. Furthermore, the device has the potential for large voltage swing ( ∼ 20V) interfacing in the microresonator-based electronics field. This high-voltage handling capability of our proposed resonator-based hysteresis comparator broadens its applicability, rendering it compatible with high-voltage systems.
AB - In this work, we present the design and experimental demonstration of the first micro-resonator-based tunable hysteresis comparator. The proposed design employs an electrostatically driven clamped-clamped microbeam operated in the nonlinear regime. The design operation is assigned such that both the resonator’s drive frequency and beam bias can be utilized to tune the nonlinear dynamic behavior of the resonator. This tunable nonlinear behavior allows the device to exhibit a hysteretic voltage response with a tunable hysteresis voltage range. In the frequency tuning scheme, the hysteresis range is directly proportional to the driving frequency shift, with a maximum hysteresis portion of 51.4% achievable. In the voltage tuning scheme, the hysteresis range exhibits a linear relationship with the bias voltage variance without compromising tunability. Moreover, the voltage tuning scheme provides a simpler solution as it simplifies the complexity of the control system and provides a better stable and repeatable control capability. The proposed resonator-based comparator has many additional benefits, including stable electrical properties, a long lifetime due to the elimination of physical contact, and a wide tuning hysteresis range. Furthermore, the device has the potential for large voltage swing ( ∼ 20V) interfacing in the microresonator-based electronics field. This high-voltage handling capability of our proposed resonator-based hysteresis comparator broadens its applicability, rendering it compatible with high-voltage systems.
UR - http://hdl.handle.net/10754/693300
UR - https://ieeexplore.ieee.org/document/10197231/
U2 - 10.1109/jmems.2023.3296464
DO - 10.1109/jmems.2023.3296464
M3 - Article
SN - 1057-7157
SP - 1
EP - 11
JO - Journal of Microelectromechanical Systems
JF - Journal of Microelectromechanical Systems
ER -