TY - JOUR
T1 - Novel microRNAs and microsatellite-like small RNAs in sexual and apomictic Boechera species
AU - Amiteye, Samuel
AU - Corral, Jose M.
AU - Vogel, Heiko
AU - Kuhlmann, Markus
AU - Mette, Michael F.
AU - Sharbel, Timothy F.
PY - 2013
Y1 - 2013
N2 - Apomixis refers to plant asexual reproduction through seeds that give rise to progeny which are genotypically identical to the maternal parent. It has evolved from many different sexual taxa although the underlying genetic factors remain unknown. Previous analyses of the over-representation of transcription factors, in a comparison of microdissected ovules from apomictic and sexual Boechera, showed that many transcription factor mRNAs possessed microRNA (miRNAs) binding sites, thus pointing to miRNAs as potentially important factors that may be involved in the regulatory switch from sexual to apomictic reproduction. A microarray-based approach was used to identify (1) 673 microsatellitelike small RNAs (misRNAs) containing predominantly 2-7 repeats of (GAA)n/(CUU)n, (GCA)n/(CGU)n, (GGA)n/(CCU)n, (GGU)n/(CCA)n and (UGA)n/(ACU)n, and (2) 166 more typical non-repeat small RNAs. In total, 87 small RNAs were found to be located in cDNAs that could fold into stem-loop structures and thus represent miRNA molecules. In addition, 109 Boechera small RNAs including both misRNAs and non-repeat small RNAs, showed significant homology to 407 Arabidopsis thaliana small RNAs including the A. thaliana pollen-specific ath-miR5021. This indicates that only a fraction of the identified small RNAs are unique to Boechera. Ten small RNAs were validated using a Northern blot assay on flower and leaf tissues, eight of which showed flower-specific expression with varying abundance. The potential binding sites of many of the misRNAs and non-repeat small RNAs occur predominantly in exonic regions. This feature coupled with their flower-specific pattern of expression is suggestive of their probable role in post-transcriptional gene regulation. We propose that quantitative variation for misRNA target binding (and hence post-transcriptional gene regulation) could arise via microsatellite length polymorphisms occurring either in misRNA precursors or in their gene targets.
AB - Apomixis refers to plant asexual reproduction through seeds that give rise to progeny which are genotypically identical to the maternal parent. It has evolved from many different sexual taxa although the underlying genetic factors remain unknown. Previous analyses of the over-representation of transcription factors, in a comparison of microdissected ovules from apomictic and sexual Boechera, showed that many transcription factor mRNAs possessed microRNA (miRNAs) binding sites, thus pointing to miRNAs as potentially important factors that may be involved in the regulatory switch from sexual to apomictic reproduction. A microarray-based approach was used to identify (1) 673 microsatellitelike small RNAs (misRNAs) containing predominantly 2-7 repeats of (GAA)n/(CUU)n, (GCA)n/(CGU)n, (GGA)n/(CCU)n, (GGU)n/(CCA)n and (UGA)n/(ACU)n, and (2) 166 more typical non-repeat small RNAs. In total, 87 small RNAs were found to be located in cDNAs that could fold into stem-loop structures and thus represent miRNA molecules. In addition, 109 Boechera small RNAs including both misRNAs and non-repeat small RNAs, showed significant homology to 407 Arabidopsis thaliana small RNAs including the A. thaliana pollen-specific ath-miR5021. This indicates that only a fraction of the identified small RNAs are unique to Boechera. Ten small RNAs were validated using a Northern blot assay on flower and leaf tissues, eight of which showed flower-specific expression with varying abundance. The potential binding sites of many of the misRNAs and non-repeat small RNAs occur predominantly in exonic regions. This feature coupled with their flower-specific pattern of expression is suggestive of their probable role in post-transcriptional gene regulation. We propose that quantitative variation for misRNA target binding (and hence post-transcriptional gene regulation) could arise via microsatellite length polymorphisms occurring either in misRNA precursors or in their gene targets.
UR - http://www.scopus.com/inward/record.url?scp=84888867233&partnerID=8YFLogxK
M3 - Article
C2 - 25070713
AN - SCOPUS:84888867233
SN - 2211-5366
VL - 2
SP - 45
EP - 62
JO - MicroRNA (Shāriqah, United Arab Emirates)
JF - MicroRNA (Shāriqah, United Arab Emirates)
IS - 1
ER -