Numerical Modeling of Graphene Nano-Ribbon by DGTD Taking into Account the Spatial Dispersion Effects

Ping Li, L. J. Jiang, Hakan Bagci

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

It is well known that graphene demonstrates spatial dispersion properties [1]-[3], i.e., its conductivity is nonlocal and a function of spectral wave number (momentum operator) q. In this work, to fully account for effects of spatial dispersion on transmission of high speed signals along graphene nano-ribbon (GNR) interconnects, a discontinuous Galerkin time-domain (DGTD) algorithm is proposed. The atomically-thick GNR is modeled using a nonlocal transparent surface impedance boundary condition (SIBC) [4] incorporated into the DGTD scheme. Since the conductivity is a complicated function of q (and one cannot find an analytical Fourier transform pair between q and spatial differential operators), an exact time domain SIBC model cannot be derived. To overcome this problem, the conductivity is approximated by its Taylor series in spectral domain under low-q assumption. This approach permits expressing the time domain SIBC in the form of a second-order partial differential equation (PDE) in current density and electric field intensity. To permit easy incorporation of this PDE with the DGTD algorithm, three auxiliary variables, which degenerate the second-order (temporal and spatial) differential operators to first-order ones, are introduced. Regarding to the temporal dispersion effects, the auxiliary differential equation (ADE) method [4] is utilized to eliminates the expensive temporal convolutions. To demonstrate the applicability of the proposed scheme, numerical results, which involve characterization of spatial dispersion effects on the transfer impedance matrix of GNR interconnects, will be presented.
Original languageEnglish (US)
Title of host publication2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama)
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Pages2269-2272
Number of pages4
ISBN (Print)9784885523168
DOIs
StatePublished - Feb 28 2019

Fingerprint

Dive into the research topics of 'Numerical Modeling of Graphene Nano-Ribbon by DGTD Taking into Account the Spatial Dispersion Effects'. Together they form a unique fingerprint.

Cite this