TY - JOUR
T1 - Omnidirectional Harvesting of Weak Light Using a Graphene Quantum Dot-Modified Organic/Silicon Hybrid Device
AU - Tsai, Meng-Lin
AU - Tsai, Dung-Sheng
AU - Tang, Libin
AU - Chen, Lih-Juann
AU - Lau, Shu Ping
AU - He, Jr-Hau
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This research was supported by KAUST baseline funding, the Research Grants Council of Hong Kong (Project no. PolyU 153012/14P) and National Natural Science Foundation of China (NSFC grant no. 11374250).
PY - 2017/4/27
Y1 - 2017/4/27
N2 - Despite great improvements in traditional inorganic photodetectors and photovoltaics, more progress is needed in the detection/collection of light at low-level conditions. Traditional photodetectors tend to suffer from high noise when operated at room temperature; therefore, these devices require additional cooling systems to detect weak or dim light. Conventional solar cells also face the challenge of poor light-harvesting capabilities in hazy or cloudy weather. The real world features such varying levels of light, which makes it important to develop strategies that allow optical devices to function when conditions are less than optimal. In this work, we report an organic/inorganic hybrid device that consists of graphene quantum dot-modified poly(3,4-ethylenedioxythiophene) polystyrenesulfonate spin-coated on Si for the detection/harvest of weak light. The hybrid configuration provides the device with high responsivity and detectability, omnidirectional light trapping, and fast operation speed. To demonstrate the potential of this hybrid device in real world applications, we measured near-infrared light scattered through human tissue to demonstrate noninvasive oximetric photodetection as well as characterized the device's photovoltaic properties in outdoor (i.e., weather-dependent) and indoor weak light conditions. This organic/inorganic device configuration demonstrates a promising strategy for developing future high-performance low-light compatible photodetectors and photovoltaics.
AB - Despite great improvements in traditional inorganic photodetectors and photovoltaics, more progress is needed in the detection/collection of light at low-level conditions. Traditional photodetectors tend to suffer from high noise when operated at room temperature; therefore, these devices require additional cooling systems to detect weak or dim light. Conventional solar cells also face the challenge of poor light-harvesting capabilities in hazy or cloudy weather. The real world features such varying levels of light, which makes it important to develop strategies that allow optical devices to function when conditions are less than optimal. In this work, we report an organic/inorganic hybrid device that consists of graphene quantum dot-modified poly(3,4-ethylenedioxythiophene) polystyrenesulfonate spin-coated on Si for the detection/harvest of weak light. The hybrid configuration provides the device with high responsivity and detectability, omnidirectional light trapping, and fast operation speed. To demonstrate the potential of this hybrid device in real world applications, we measured near-infrared light scattered through human tissue to demonstrate noninvasive oximetric photodetection as well as characterized the device's photovoltaic properties in outdoor (i.e., weather-dependent) and indoor weak light conditions. This organic/inorganic device configuration demonstrates a promising strategy for developing future high-performance low-light compatible photodetectors and photovoltaics.
UR - http://hdl.handle.net/10754/623446
UR - http://pubs.acs.org/doi/full/10.1021/acsnano.6b08567
UR - http://www.scopus.com/inward/record.url?scp=85019769740&partnerID=8YFLogxK
U2 - 10.1021/acsnano.6b08567
DO - 10.1021/acsnano.6b08567
M3 - Article
C2 - 28430415
SN - 1936-0851
VL - 11
SP - 4564
EP - 4570
JO - ACS Nano
JF - ACS Nano
IS - 5
ER -