Abstract
Classical Csiszár-Kullback inequalities bound the L1-distance of two probability densities in terms ot their relative (convex) entropies. Here we generalise such inequalities to not necessarily normalized and possibly non-positive L1 functions. Also, we analyse the optimality of the derived Csiszár-Kullback type inequalities and show that they are in many important cases significantly sharper than the classical ones (in terms of the functional dependence of the L1 bound on the relative entropy). Moreover our construction of these bounds is rather elementary.
Original language | English (US) |
---|---|
Pages (from-to) | 235-253 |
Number of pages | 19 |
Journal | Monatshefte fur Mathematik |
Volume | 131 |
Issue number | 3 |
DOIs | |
State | Published - 2000 |
Externally published | Yes |
Keywords
- Generalized Csiszár-Kullback inequalities
- Relative (convex) entropies
ASJC Scopus subject areas
- General Mathematics