Abstract
We examine numerically the issue of convergence for initial-value solutions and similarity solutions of the compressible Euler equations in two dimensions in the presence of vortex sheets (slip lines). We consider the problem of a normal shock wave impacting an inclined density discontinuity in the presence of a solid boundary. Two solution techniques are examined: the first solves the Euler equations by a Godunov method as an initial-value problem and the second as a boundary value problem, after invoking self-similarity. Our results indicate nonconvergence of the initial-value calculation at fixed time, with increasing spatial-temporal resolution. The similarity solution appears to converge to the weak 'zero-temperature' solution of the Euler equations in the presence of the slip line. Some speculations on the geometric character of solutions of the initial-value problem are presented.
Original language | English (US) |
---|---|
Pages (from-to) | 2650-2655 |
Number of pages | 6 |
Journal | Physics of Fluids |
Volume | 8 |
Issue number | 10 |
DOIs | |
State | Published - Oct 1996 |
Externally published | Yes |
ASJC Scopus subject areas
- Computational Mechanics
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
- Fluid Flow and Transfer Processes