TY - JOUR
T1 - On stability and monotonicity requirements of finite difference approximations of stochastic conservation laws with random viscosity
AU - Pettersson, Per
AU - Doostan, Alireza
AU - Nordström, Jan
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The first author gratefully acknowledges funding from King Abdullah University of Science and Technology (KAUST), Saudi Arabia. The second author gratefully acknowledges the support of the Department of Energy under grant DE-SC0006402.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2013/5
Y1 - 2013/5
N2 - The stochastic Galerkin and collocation methods are used to solve an advection-diffusion equation with uncertain and spatially varying viscosity. We investigate well-posedness, monotonicity and stability for the extended system resulting from the Galerkin projection of the advection-diffusion equation onto the stochastic basis functions. High-order summation-by-parts operators and weak imposition of boundary conditions are used to prove stability of the semi-discrete system.It is essential that the eigenvalues of the resulting viscosity matrix of the stochastic Galerkin system are positive and we investigate conditions for this to hold. When the viscosity matrix is diagonalizable, stochastic Galerkin and stochastic collocation are similar in terms of computational cost, and for some cases the accuracy is higher for stochastic Galerkin provided that monotonicity requirements are met. We also investigate the total spatial operator of the semi-discretized system and its impact on the convergence to steady-state. © 2013 Elsevier B.V.
AB - The stochastic Galerkin and collocation methods are used to solve an advection-diffusion equation with uncertain and spatially varying viscosity. We investigate well-posedness, monotonicity and stability for the extended system resulting from the Galerkin projection of the advection-diffusion equation onto the stochastic basis functions. High-order summation-by-parts operators and weak imposition of boundary conditions are used to prove stability of the semi-discrete system.It is essential that the eigenvalues of the resulting viscosity matrix of the stochastic Galerkin system are positive and we investigate conditions for this to hold. When the viscosity matrix is diagonalizable, stochastic Galerkin and stochastic collocation are similar in terms of computational cost, and for some cases the accuracy is higher for stochastic Galerkin provided that monotonicity requirements are met. We also investigate the total spatial operator of the semi-discretized system and its impact on the convergence to steady-state. © 2013 Elsevier B.V.
UR - http://hdl.handle.net/10754/599044
UR - https://linkinghub.elsevier.com/retrieve/pii/S0045782513000418
UR - http://www.scopus.com/inward/record.url?scp=84875785314&partnerID=8YFLogxK
U2 - 10.1016/j.cma.2013.02.009
DO - 10.1016/j.cma.2013.02.009
M3 - Article
SN - 0045-7825
VL - 258
SP - 134
EP - 151
JO - Computer Methods in Applied Mechanics and Engineering
JF - Computer Methods in Applied Mechanics and Engineering
ER -