TY - JOUR
T1 - On the addition of conducting ceramic nanoparticles in solvent-free ionic liquid electrolyte for dye-sensitized solar cells
AU - Lee, Chuan-Pei
AU - Lee, Kun-Mu
AU - Chen, Po-Yen
AU - Ho, Kuo-Chuan
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work was financially supported by the King Abdullah University of Science and Technology (KAUST) through the Global Research Partnership Centers-in-Development grant (KAUST GRP-CID). Some of the instruments used in this study were made available through the support of the National Science Council (NSC) of Taiwan, the Republic of China, under Grant no. NSC 96-2120-M-002-016 and NSC 97-2120-M-002-012.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2009/8
Y1 - 2009/8
N2 - Titanium carbide (TiC) is an extremely hard conducting ceramic material often used as a coating for titanium alloys as well as steel and aluminum components to improve their surface properties. In this study, conducting ceramic nanoparticles (CCNPs) have been used, for the first time, in dye-sensitized solar cells (DSSCs), and the incorporation of TiC nanoparticles in a binary ionic liquid electrolyte on the cell performance has been investigated. Cell conversion efficiency with 0.6 wt% TiC reached 1.68%, which was higher than that without adding TiC (1.18%); however, cell efficiency decreased when the TiC content reached 1.0 wt%. The electrochemical impedance spectroscopy (EIS) technique was employed to analyze the interfacial resistance in DSSCs, and it was found that the resistance of the charge-transfer process at the Pt counter electrode (Rct1) decreased when up to 1.0 wt% TiC was added. Presumably, this was due to the formation of the extended electron transfer surface (EETS) which facilitates electron transfer to the bulk electrolyte, resulting in a decrease of the dark current, whereby the open-circuit potential (VOC) could be improved. Furthermore, a significant increase in the fill factor (FF) for all TiC additions was related to the decrease in the series resistance (RS) of the DSSCs. However, at 1.0 wt% TiC, the largest charge-transfer resistance at the TiO2/dye/electrolyte interface was observed and resulted from the poor penetration of the electrolyte into the porous TiO2. The long-term stability of DSSCs with a binary ionic liquid electrolyte, which is superior to that of an organic solvent-based electrolyte, was also studied. © 2009 Elsevier B.V. All rights reserved.
AB - Titanium carbide (TiC) is an extremely hard conducting ceramic material often used as a coating for titanium alloys as well as steel and aluminum components to improve their surface properties. In this study, conducting ceramic nanoparticles (CCNPs) have been used, for the first time, in dye-sensitized solar cells (DSSCs), and the incorporation of TiC nanoparticles in a binary ionic liquid electrolyte on the cell performance has been investigated. Cell conversion efficiency with 0.6 wt% TiC reached 1.68%, which was higher than that without adding TiC (1.18%); however, cell efficiency decreased when the TiC content reached 1.0 wt%. The electrochemical impedance spectroscopy (EIS) technique was employed to analyze the interfacial resistance in DSSCs, and it was found that the resistance of the charge-transfer process at the Pt counter electrode (Rct1) decreased when up to 1.0 wt% TiC was added. Presumably, this was due to the formation of the extended electron transfer surface (EETS) which facilitates electron transfer to the bulk electrolyte, resulting in a decrease of the dark current, whereby the open-circuit potential (VOC) could be improved. Furthermore, a significant increase in the fill factor (FF) for all TiC additions was related to the decrease in the series resistance (RS) of the DSSCs. However, at 1.0 wt% TiC, the largest charge-transfer resistance at the TiO2/dye/electrolyte interface was observed and resulted from the poor penetration of the electrolyte into the porous TiO2. The long-term stability of DSSCs with a binary ionic liquid electrolyte, which is superior to that of an organic solvent-based electrolyte, was also studied. © 2009 Elsevier B.V. All rights reserved.
UR - http://hdl.handle.net/10754/599045
UR - https://linkinghub.elsevier.com/retrieve/pii/S0927024809001044
UR - http://www.scopus.com/inward/record.url?scp=67349285108&partnerID=8YFLogxK
U2 - 10.1016/j.solmat.2009.03.010
DO - 10.1016/j.solmat.2009.03.010
M3 - Article
SN - 0927-0248
VL - 93
SP - 1411
EP - 1416
JO - Solar Energy Materials and Solar Cells
JF - Solar Energy Materials and Solar Cells
IS - 8
ER -