TY - JOUR
T1 - On the decision threshold of eigenvalue ratio detector based on moments of joint and marginal distributions of extreme eigenvalues
AU - Shakir, Muhammad Zeeshan
AU - Rao, Anlei
AU - Alouini, Mohamed-Slim
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2013/3
Y1 - 2013/3
N2 - Eigenvalue Ratio (ER) detector based on the two extreme eigenvalues of the received signal covariance matrix is currently one of the most effective solution for spectrum sensing. However, the analytical results of such scheme often depend on asymptotic assumptions since the distribution of the ratio of two extreme eigenvalues is exceptionally complex to compute. In this paper, a non-asymptotic spectrum sensing approach for ER detector is introduced to approximate the marginal and joint distributions of the two extreme eigenvalues. The two extreme eigenvalues are considered as dependent Gaussian random variables such that their joint probability density function (PDF) is approximated by a bivariate Gaussian distribution function for any number of cooperating secondary users and received samples. The PDF approximation approach is based on the moment matching method where we calculate the exact analytical moments of joint and marginal distributions of the two extreme eigenvalues. The decision threshold is calculated by exploiting the statistical mean and the variance of each of the two extreme eigenvalues and the correlation coefficient between them. The performance analysis of our newly proposed approximation approach is compared with the already published asymptotic Tracy-Widom approximation approach. It has been shown that our results are in perfect agreement with the simulation results for any number of secondary users and received samples. © 2002-2012 IEEE.
AB - Eigenvalue Ratio (ER) detector based on the two extreme eigenvalues of the received signal covariance matrix is currently one of the most effective solution for spectrum sensing. However, the analytical results of such scheme often depend on asymptotic assumptions since the distribution of the ratio of two extreme eigenvalues is exceptionally complex to compute. In this paper, a non-asymptotic spectrum sensing approach for ER detector is introduced to approximate the marginal and joint distributions of the two extreme eigenvalues. The two extreme eigenvalues are considered as dependent Gaussian random variables such that their joint probability density function (PDF) is approximated by a bivariate Gaussian distribution function for any number of cooperating secondary users and received samples. The PDF approximation approach is based on the moment matching method where we calculate the exact analytical moments of joint and marginal distributions of the two extreme eigenvalues. The decision threshold is calculated by exploiting the statistical mean and the variance of each of the two extreme eigenvalues and the correlation coefficient between them. The performance analysis of our newly proposed approximation approach is compared with the already published asymptotic Tracy-Widom approximation approach. It has been shown that our results are in perfect agreement with the simulation results for any number of secondary users and received samples. © 2002-2012 IEEE.
UR - http://hdl.handle.net/10754/562679
UR - http://ieeexplore.ieee.org/document/6415100/
UR - http://www.scopus.com/inward/record.url?scp=84875617607&partnerID=8YFLogxK
U2 - 10.1109/TWC.2012.011513.111486
DO - 10.1109/TWC.2012.011513.111486
M3 - Article
SN - 1536-1276
VL - 12
SP - 974
EP - 983
JO - IEEE Transactions on Wireless Communications
JF - IEEE Transactions on Wireless Communications
IS - 3
ER -