On the detectability of transverse cracks in laminated composites using electrical potential change measurements

Lakshmi Selvakumaran, Quan Long, Serge M. Prudhomme, Gilles Lubineau

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

Real-time health monitoring of structures made of laminated composites is necessary as significant damage may occur without any visible signs on the surface. Inspection by electrical tomography (ET) seems a viable approach that relies on voltage measurements from a network of electrodes across the inspected domain to infer conductivity change within the bulk material. If conductivity decreases significantly with increasing damage, the obtained conductivity map can be correlated to the degradation state of the material. We focus here on detection of transverse cracks. As transverse cracks modify the in-plane transverse conductivity of a single ply, we expect them to be detectable by electrical measurements. Yet, the quality of detection is directly related to the sensitivity of the measurements to the presence of cracks. We use numerical experiments to demonstrate that the sensitivity depends on several material and geometrical parameters. Based on the results, the applicability of ET to detect transverse cracks is discussed. One conclusion from the study is that detecting transverse cracks using ET is more reliable in some laminate configurations than in others. Recommendations about the properties of either the pristine material or the inspected structures are provided to establish if ET is reliable in detecting transverse cracks.
Original languageEnglish (US)
Pages (from-to)237-246
Number of pages10
JournalComposite Structures
Volume121
DOIs
StatePublished - Mar 2015

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Ceramics and Composites

Fingerprint

Dive into the research topics of 'On the detectability of transverse cracks in laminated composites using electrical potential change measurements'. Together they form a unique fingerprint.

Cite this