On the mechanism of hydrogen storage in a metal-organic framework material

Jonathan L. Belof, Abraham C. Stern, Mohamed Eddaoudi, Brian Space*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

183 Scopus citations

Abstract

Monte Carlo simulations were performed modeling hydrogen sorption in a recently synthesized metal-organic framework material (MOF) that exhibits large molecular hydrogen uptake capacity. The MOF is remarkable because at 78 K and 1.0 atm it sorbs hydrogen at a density near that of liquid hydrogen (at 20 K and 1.0 atm) when considering H2 density in the pores. Unlike most other MOFs that have been investigated for hydrogen storage, it has a highly ionic framework and many relatively small channels. The simulations demonstrate that it is both of these physical characteristics that lead to relatively strong hydrogen interactions in the MOF and ultimately large hydrogen uptake. Microscopically, hydrogen interacts with the MOF via three principle attractive potential energy contributions: Van der Waals, charge-quadrupole, and induction. Previous simulations of hydrogen storage in MOFs and other materials have not focused on the role of polarization effects, but they are demonstrated here to be the dominant contribution to hydrogen physisorption. Indeed, polarization interactions in the MOF lead to two distinct populations of dipolar hydrogen that are identified from the simulations that should be experimentally discernible using, for example, Raman spectroscopy. Since polarization interactions are significantly enhanced by the presence of a charged framework with narrow pores, MOFs are excellent hydrogen storage candidates.

Original languageEnglish (US)
Pages (from-to)15202-15210
Number of pages9
JournalJournal of the American Chemical Society
Volume129
Issue number49
DOIs
StatePublished - Dec 12 2007
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • Biochemistry
  • Catalysis
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'On the mechanism of hydrogen storage in a metal-organic framework material'. Together they form a unique fingerprint.

Cite this