Skip to main navigation
Skip to search
Skip to main content
KAUST FACULTY PORTAL Home
Home
Profiles
Research units
Research output
Press/Media
Prizes
Courses
Equipment
Student theses
Datasets
Search by expertise, name or affiliation
On the real symmetric inverse eigenvalue problem
M. A. Shalaby
*
*
Corresponding author for this work
Research output
:
Contribution to journal
›
Article
›
peer-review
3
Scopus citations
Overview
Fingerprint
Fingerprint
Dive into the research topics of 'On the real symmetric inverse eigenvalue problem'. Together they form a unique fingerprint.
Sort by
Weight
Alphabetically
INIS
symmetry
100%
matrices
100%
eigenvalues
100%
solutions
66%
modifications
33%
perturbations
33%
expansion
33%
newton method
33%
eigenvectors
33%
Mathematics
Matrix
100%
Eigenvalue Problem
100%
Newton Method
50%
Eigenvector
50%
Analyticity
50%
Real Symmetric Matrix
50%
Eigensystem
50%
Parameters
50%