TY - GEN
T1 - On the relationship between visual attributes and convolutional networks
AU - Escorcia, Victor
AU - Niebles, Juan Carlos
AU - Ghanem, Bernard
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/10/14
Y1 - 2015/10/14
N2 - One of the cornerstone principles of deep models is their abstraction capacity, i.e. their ability to learn abstract concepts from 'simpler' ones. Through extensive experiments, we characterize the nature of the relationship between abstract concepts (specifically objects in images) learned by popular and high performing convolutional networks (conv-nets) and established mid-level representations used in computer vision (specifically semantic visual attributes). We focus on attributes due to their impact on several applications, such as object description, retrieval and mining, and active (and zero-shot) learning. Among the findings we uncover, we show empirical evidence of the existence of Attribute Centric Nodes (ACNs) within a conv-net, which is trained to recognize objects (not attributes) in images. These special conv-net nodes (1) collectively encode information pertinent to visual attribute representation and discrimination, (2) are unevenly and sparsely distribution across all layers of the conv-net, and (3) play an important role in conv-net based object recognition.
AB - One of the cornerstone principles of deep models is their abstraction capacity, i.e. their ability to learn abstract concepts from 'simpler' ones. Through extensive experiments, we characterize the nature of the relationship between abstract concepts (specifically objects in images) learned by popular and high performing convolutional networks (conv-nets) and established mid-level representations used in computer vision (specifically semantic visual attributes). We focus on attributes due to their impact on several applications, such as object description, retrieval and mining, and active (and zero-shot) learning. Among the findings we uncover, we show empirical evidence of the existence of Attribute Centric Nodes (ACNs) within a conv-net, which is trained to recognize objects (not attributes) in images. These special conv-net nodes (1) collectively encode information pertinent to visual attribute representation and discrimination, (2) are unevenly and sparsely distribution across all layers of the conv-net, and (3) play an important role in conv-net based object recognition.
UR - http://www.scopus.com/inward/record.url?scp=84959190514&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2015.7298730
DO - 10.1109/CVPR.2015.7298730
M3 - Conference contribution
AN - SCOPUS:84959190514
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 1256
EP - 1264
BT - IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
PB - IEEE Computer Society
T2 - IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
Y2 - 7 June 2015 through 12 June 2015
ER -