TY - JOUR
T1 - On the robustness and performance of entropy stable collocated discontinuous Galerkin methods
AU - Rojas, Diego B.
AU - Boukharfane, Radouan
AU - Dalcin, Lisandro
AU - Del Rey Fernández, David C.
AU - Ranocha, Hendrik
AU - Keyes, David E.
AU - Parsani, Matteo
N1 - KAUST Repository Item: Exported on 2020-10-30
Acknowledgements: The research reported in this paper was funded by King Abdullah University of Science and Technology. We are thankful for the computing resources of the Supercomputing Laboratory and the Extreme Computing Research Center at King Abdullah University of Science and Technology.
PY - 2020/10/22
Y1 - 2020/10/22
N2 - In computational fluid dynamics, the demand for increasingly multidisciplinary reliable simulations, for both analysis and design optimization purposes, requires transformational advances in individual components of future solvers. At the algorithmic level, hardware compatibility and efficiency are of paramount importance in determining viability at exascale and beyond. However, equally important (if not more so) is algorithmic robustness with minimal user intervention, which becomes progressively more challenging to achieve as problem size and physics complexity increase. We numerically show that low and high order entropy stable collocated discontinuous
Galerkin discretizations based on summation-by-part operators and simultaneous-approximationterms technique provide an essential step toward a truly enabling technology in terms of reliability and robustness for both under-resolved turbulent flow simulations and flows with discontinuities.
AB - In computational fluid dynamics, the demand for increasingly multidisciplinary reliable simulations, for both analysis and design optimization purposes, requires transformational advances in individual components of future solvers. At the algorithmic level, hardware compatibility and efficiency are of paramount importance in determining viability at exascale and beyond. However, equally important (if not more so) is algorithmic robustness with minimal user intervention, which becomes progressively more challenging to achieve as problem size and physics complexity increase. We numerically show that low and high order entropy stable collocated discontinuous
Galerkin discretizations based on summation-by-part operators and simultaneous-approximationterms technique provide an essential step toward a truly enabling technology in terms of reliability and robustness for both under-resolved turbulent flow simulations and flows with discontinuities.
UR - http://hdl.handle.net/10754/665707
UR - https://linkinghub.elsevier.com/retrieve/pii/S0021999120306653
U2 - 10.1016/j.jcp.2020.109891
DO - 10.1016/j.jcp.2020.109891
M3 - Article
SN - 0021-9991
SP - 109891
JO - Journal of Computational Physics
JF - Journal of Computational Physics
ER -