Abstract
Generative Models (GMs) have attracted considerable attention due to their tremendous success in various domains, such as computer vision where they are capable to generate impressive realistic-looking images. Likelihood-based GMs are attractive due to the possibility to generate new data by a single model evaluation. However, they typically achieve lower sample quality compared to state-of-the-art score-based Diffusion Models (DMs). This paper provides a significant step in the direction of addressing this limitation. The idea is to borrow one of the strengths of score-based DMs, which is the ability to perform accurate density estimation in low-density regions and to address manifold overfitting by means of data mollification. We propose a view of data mollification within likelihood-based GMs as a continuation method, whereby the optimization objective smoothly transitions from simple-to-optimize to the original target. Crucially, data mollification can be implemented by adding one line of code in the optimization loop, and we demonstrate that this provides a boost in generation quality of likelihood-based GMs, without computational overheads. We report results on real-world image data sets and UCI benchmarks with popular likelihood-based GMs, including variants of variational autoencoders and normalizing flows, showing large improvements in FID score and density estimation.
Original language | English (US) |
---|---|
State | Published - 2023 |
Event | 37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, United States Duration: Dec 10 2023 → Dec 16 2023 |
Conference
Conference | 37th Conference on Neural Information Processing Systems, NeurIPS 2023 |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 12/10/23 → 12/16/23 |
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems
- Signal Processing