TY - GEN
T1 - Open World Classification with Adaptive Negative Samples
AU - Bai, Ke
AU - Wang, Guoyin
AU - Li, Jiwei
AU - Park, Sunghyun
AU - Lee, Sungjin
AU - Xu, Puyang
AU - Henao, Ricardo
AU - Carin, Lawrence
N1 - KAUST Repository Item: Exported on 2023-03-15
Acknowledgements: This research was supported by DARPA, DOE, NIH, ONR and NSF.
PY - 2022
Y1 - 2022
N2 - Open world classification is a task in natural language processing with key practical relevance and impact. Since the open or unknown category data only manifests in the inference phase, finding a model with a suitable decision boundary accommodating for the identification of known classes and discrimination of the open category is challenging. The performance of existing models is limited by the lack of effective open category data during the training stage or the lack of a good mechanism to learn appropriate decision boundaries. We propose an approach based on adaptive negative samples (ANS) designed to generate effective synthetic open category samples in the training stage and without requiring any prior knowledge or external datasets. Empirically, we find a significant advantage in using auxiliary one-versus-rest binary classifiers, which effectively utilize the generated negative samples and avoid the complex threshold-seeking stage in previous works. Extensive experiments on three benchmark datasets show that ANS achieves significant improvements over state-of-the-art methods.
AB - Open world classification is a task in natural language processing with key practical relevance and impact. Since the open or unknown category data only manifests in the inference phase, finding a model with a suitable decision boundary accommodating for the identification of known classes and discrimination of the open category is challenging. The performance of existing models is limited by the lack of effective open category data during the training stage or the lack of a good mechanism to learn appropriate decision boundaries. We propose an approach based on adaptive negative samples (ANS) designed to generate effective synthetic open category samples in the training stage and without requiring any prior knowledge or external datasets. Empirically, we find a significant advantage in using auxiliary one-versus-rest binary classifiers, which effectively utilize the generated negative samples and avoid the complex threshold-seeking stage in previous works. Extensive experiments on three benchmark datasets show that ANS achieves significant improvements over state-of-the-art methods.
UR - http://hdl.handle.net/10754/690324
UR - https://aclanthology.org/2022.emnlp-main.295
UR - http://www.scopus.com/inward/record.url?scp=85149439068&partnerID=8YFLogxK
M3 - Conference contribution
SP - 4378
EP - 4392
BT - 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022
PB - Association for Computational Linguistics (ACL)
ER -