TY - GEN
T1 - Operation of three-phase modular multilevel converter (MMC) with reduced number of arms
AU - Elserougi, Ahmed
AU - Ahmed, Shehab
AU - Massoud, Ahmed
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/5/19
Y1 - 2016/5/19
N2 - Conventional three-phase MMC consists of six-arms, each arm is controlled to generate unipolar voltage ranging from zero to Vdc where Vdc is the input DC voltage. Each arm voltage has two components (DC and AC components). In this work, the operation of MMC with reduced number of arms (four arms only), correspondingly reduced cost is presented. This mode can be also used with the conventional three-phase MMC in case of faulty leg. In the presented approach, only two legs (i.e. four arms) are considered, where two out of the three phases are connected to these legs, while the third phase is tapped from the mid-point of the DC supply. To assure generating three-phase output voltages, the AC components in the presented approach will depend on the line-voltages. As the voltage per arm is limited to Vdc, the peak of line-voltage in the suggested mode is limited to 0.5 Vdc, i.e. the generated phase voltages will have a peak of 0.5Vdc/√3 (i.e. 57.7% compared to conventional three-phase MMC with same input voltage). A detailed illustration of the operational concept of the proposed architecture is presented in this work. The simulation results of the suggested approach is presented to validate the proposed concept.
AB - Conventional three-phase MMC consists of six-arms, each arm is controlled to generate unipolar voltage ranging from zero to Vdc where Vdc is the input DC voltage. Each arm voltage has two components (DC and AC components). In this work, the operation of MMC with reduced number of arms (four arms only), correspondingly reduced cost is presented. This mode can be also used with the conventional three-phase MMC in case of faulty leg. In the presented approach, only two legs (i.e. four arms) are considered, where two out of the three phases are connected to these legs, while the third phase is tapped from the mid-point of the DC supply. To assure generating three-phase output voltages, the AC components in the presented approach will depend on the line-voltages. As the voltage per arm is limited to Vdc, the peak of line-voltage in the suggested mode is limited to 0.5 Vdc, i.e. the generated phase voltages will have a peak of 0.5Vdc/√3 (i.e. 57.7% compared to conventional three-phase MMC with same input voltage). A detailed illustration of the operational concept of the proposed architecture is presented in this work. The simulation results of the suggested approach is presented to validate the proposed concept.
KW - Modular Multilevel Converter
KW - Reduced number of arms
UR - http://www.scopus.com/inward/record.url?scp=84974577081&partnerID=8YFLogxK
U2 - 10.1109/ICIT.2016.7474778
DO - 10.1109/ICIT.2016.7474778
M3 - Conference contribution
AN - SCOPUS:84974577081
T3 - Proceedings of the IEEE International Conference on Industrial Technology
SP - 355
EP - 359
BT - Proceedings - 2016 IEEE International Conference on Industrial Technology, ICIT 2016
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - IEEE International Conference on Industrial Technology, ICIT 2016
Y2 - 14 March 2016 through 17 March 2016
ER -